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UniCell Deconvolve: Cell Type Deconvolution For Transcriptomic Data

UniCell Deconvolve (UCD) is a pre-trained deep learning model that provides context-free estimations of cell type fractions from whole transcriptome expression data for bulk, single-cell and spatial transcriptomics data. The model is trained on the world’s largest fully-integrated scRNA-Seq training database, comprising 28M+ single cells spanning 840+ cell types from 899 studies to date. Extensive benchmarking shows UCD favors comperably when compared with reference-based deconvolution tools, without the need for pretraining. UCD demonstrates strong multi-task performance across a range of deconvolution challenges spanning several transcriptomic data modalities, disease types, and tissues.


	Read our paper at Nature Communications [https://www.nature.com/articles/s41467-023-36961-8].


	Install via pip install ucdeconvolve.


	Discuss development on GitHub [https://github.com/dchary/ucdeconvolve].
















            

          

      

      

    

  

    
      
          
            
  
Installation


From New Environment (Conda)

We highly recommend installing conda or miniconda and creating a new virtual environment to install ucdeconvolve as it reduces the likelihood of version conflicts. We suggest the following conda environment which will be compatible with jupyter notebooks.

conda create -n ucdenv python=3.8 pytables jupyter jupyterlab
conda activate ucdenv
pip install ucdeconvolve






Note

As ucdeconvolve uses HDF files as intermin datastore types, the pytables package must be installed with conda before installing ucdeconvolve to ensure that all underlying hdf5 dependencies are present.





From Existing Environment (Pip)

To install ucdeconvolve using pypi in an existing environment, first ensure that pytables has been installed if you are using an existing conda / virtualenv and that the tables package is present under pip list. Then, simply run the following command to install ucdeconvolve and any other required dependencies.

pip install ucdeconvolve










Registration


Create a New Account

Registration for UCDeconvolve is straightforward and can be done either in a notebook environment or terminal. We offer dynamic registration with live user input, or programmatic registration with al fields as an input.

Load the ucdeconvolve package and run the ‘ucd.api.register’ command as shown below. Follow the instructions by inputting the required information at each step.


[ ]:





import ucdeconvolve as ucd

ucd.api.register()







Alternatively, one can perform registration entirely programmatically by invoking the function as follows:


[ ]:





username = "USERNAME"
password = "PASSWORD"
firstname = "FIRSTNAME"
lastname = "LASTNAME"
email = "EMAIL"
institution = "INSTITUTION"

ucd.api.register(
    username = username,
    password = password,
    firstname = firstname,
    lastname = lastname,
    email = email,
    institution=institution
    dynamic = False
)









Account Activation

Upon completion of the initial registration form, you will recieve an email at the address specified with an activation code. Copy the code and paste it back into the waiting input prompt in order to activate your account. Upon account activation, a followup email will be sent with your user API key. This key will also be automatically appended to your working ‘ucd’ module instance.

If you accidentally close the registration function instance prior to adding the activation code, you can still activate your account by invoking the ucd.api.activate command and passing the activation code directly there.


[ ]:





activation_code = "ACTIVATION_CODE"
ucd.api.activate(activation_code)









New Session Authentication

When you start a new python instance, you can authenticate your API by simply calling the ucd.tl.authenticate([token]) function and passing your user access token. It will be appended to your settings module at ucd.settings.token





            

          

      

      

    

  

    
      
          
            
  
API Overview

Import the ucdeconvolve package using import ucdeconvolve as ucd.
The package contains four main modules, described in detail below.


Note

Authenticate a new python session using ucd.api.authenticate



API: api

API functions allow for user registration, account activation and authentication
for service invocation.



	api.register([username, password, ...])

	Registers a New User



	api.activate([code])

	Activate User Account



	api.authenticate(token)

	Authenticate






Tools: tl

Tools module contains the three primary prediction functions of ucdeconvolve.



	tl.base(data[, token, split, sort, ...])

	UniCell Deconvolve: Base



	tl.explain(data, celltypes[, groupby, ...])

	UniCell Deconvolve: Explain



	tl.select(data, reference[, token, ...])

	UniCell Deconvolve: Select






Plotting: pl

Plotting functions for embedding and spatial are designed to interface as wrappers
around scanpy functions such as sc.pl.embedding and sc.pl.spatial with
additional functionality to enable construciton of plots similar to those in
the ucdeconolve paper.



	pl.embedding(adata[, basis, color, key, ...])

	Plot Deconvolution



	pl.spatial(adata[, color, key, category, ...])

	Plot Spatial



	pl.base_clustermap(adata[, groupby, ...])

	Plot Clustered heatmap of top celltype predictions grouped by a column in 'adata.obs'



	pl.explain_boxplot(adata[, key, celltypes, ...])

	Plot Boxplots of Feature Attributions By Gene



	pl.explain_clustermap(adata[, key, n_top_genes])

	Plot Explanation Results as Clustermap






Utilities: utils

Utilities module contains useful functions for interfacing with results of
deconvolution functions and preparing prediction queries.



	utils.read_results(adata[, key, category, ...])

	Read deconvolution results from an annotated dataset and return a dataframe.



	utils.assign_top_celltypes(adata[, key, ...])

	Gets top deconvolution predictions by cluster.



	utils.get_base_celltypes([root, category, ...])

	Get UCDBase CellTypes



	utils.get_prebuilt_reference(reference[, ...])

	Get Prebuilt Reference



	utils.list_prebuilt_references([token])

	List Prebuilt References









Compatability: compat

The compatability module allows for users of earlier builds of ucdeconvolve
who have existing workflows to continue leveraging legacy code with minimal
required changes.


Warning

This module will be removed in the near future.





	compat.deconvolve(data, token[, split, ...])

	UniCell Deconvolve



	compat.read_results(adata[, category, key])

	Read deconvolution results from an annotated dataset and return a dataframe.









            

          

      

      

    

  

    
      
          
            
  
API

UniCell Deconvolve - Cell Type Deconvolution For Transcriptomic Data.


	
ucdeconvolve.api.activate(code: Optional[str] = None) → None

	Activate User Account

Activates account with an acitvation code recieved via email


	Parameters:

	code – Activation code emailed to user upon registration



	Return type:

	None










	
ucdeconvolve.api.authenticate(token: str) → None

	Authenticate

Updates user access token credentials


	Parameters:

	token – Valid user token



	Return type:

	None










	
ucdeconvolve.api.register(username: Optional[str] = None, password: Optional[str] = None, firstname: Optional[str] = None, lastname: Optional[str] = None, email: Optional[str] = None, institution: Optional[str] = None, dynamic: bool = True) → None

	Registers a New User


	Parameters:

	
	username – Username for new account


	password – Password for new account


	firstname – First name of new user


	lastname – Last name of new user


	email – Valid email address of new user. Note that an email will be sent
for account activation.


	institution – The insitution, academic or private, the user is affiliated with.


	dynamic – Whether or not to prompt for inputs dynamically, default is True.






	Return type:

	Either nothing or waits for user to complete.












            

          

      

      

    

  

    
      
          
            
  
Tools

UniCell Deconvolve - Cell Type Deconvolution For Transcriptomic Data.


	
ucdeconvolve.tl.base(data: Union[AnnData, DataFrame], token: Optional[str] = None, split: bool = True, sort: bool = True, propagate: bool = True, return_results: bool = False, key_added: str = 'ucdbase', use_raw: Union[bool, Tuple[bool, bool]] = True, verbosity: Optional[int] = None) → Optional[AnnData]

	UniCell Deconvolve: Base

Predicts cell type fractions for provided transcriptomic data.


	Parameters:

	
	data – Transcriptomic data (obs x genes) to predict cell type fractions. Can
be either a dataframe or annotated dataset. Note that in any case
data will be converted to an annotated datset object before proceeding.


	token – UCDeconvolve API access token. If None, defaults to settings parameter.


	split – Whether or not to split underlying data into
three categories, primary, cancer cell_line.
Helps with interpretability downstream, default
is True.


	sort – Sort columns of results by mean predictions. Default True.


	propagate – Whether or not to perform belief propagation and
pass predictions up a cell-type heiarchy. helpful
in interpreting overall deconvolution results.
default is True.


	return_results – Whether or not to return the predictions dict from the function,
default to false as all data is written to anndata object either
passed in, or created when passing in a dataframe, which will
in that case be returned by default. Also returns the underlying
anndata if it is a view as copying can destroy context internally.


	use_raw – Use counts in ‘adata.raw’. Default True, as by convention in
single cell analysis, log1p scaled counts before HVG filter are kept here.


	verbosity – Level of verbosity for function information. Default is taken from package,
set to ‘logging.DEBUG’ for more detailed information.






	Returns:

	adata_mixture_orig – Results appended to anndata object if return_results or if original input was dataframe.



	Return type:

	anndata.AnnData










	
ucdeconvolve.tl.explain(data: AnnData, celltypes: Union[str, List[str], Dict[Union[int, str], str]], groupby: Optional[str] = None, group_n: int = 16, group_frac: Optional[float] = None, token: Optional[str] = None, return_results: bool = False, key_added: str = 'ucdexplain', use_raw: Union[bool, Tuple[bool, bool]] = True, verbosity: Optional[int] = None) → Optional[AnnData]

	UniCell Deconvolve: Explain

Explains cell type fraction prediction for provided transcriptomic data.


	Parameters:

	
	data – Transcriptomic data (obs x genes) to predict cell type fractions. Can
be either a dataframe or annotated dataset. Note that in any case
data will be converted to an annotated datset object before proceeding.


	celltypes – Name of cell type(s) to get explanations for. If a single string is passed, this
celltype is used for all samples. If a list of strings is passed, the list must
be the same length as the dataset and each entry corresponds to which celltype
to get explanatons for in the whole dataset. If a dictionary is passed, the key
should corresponding to an ‘adata.obs’ column defined by ‘groupby’, alliowing for
celltype expalantions to be generated specific to different clusters or conditions.


	groupby – Groupby key in ‘adata.obs’ to arrange search for celltypes. If celltypes is given
as a dict, this must be defined.


	group_n – The number of samples to subsample from each group for explanations, as this is an
expensive operation and most cells in a cluster will yield similar results.


	token – UCDeconvolve API access token. If None, defaults to settings parameter.


	return_results – Whether or not to return the predictions dict from the function,
default to false as all data is written to anndata object either
passed in, or created when passing in a dataframe, which will
in that case be returned by default. Also returns the underlying
anndata if it is a view as copying can destroy context internally.


	use_raw – Use counts in ‘adata.raw’. Default True, as by convention in
single cell analysis, log1p scaled counts before HVG filter are kept here.


	verbosity – Level of verbosity for function information. Default is taken from package,
set to ‘logging.DEBUG’ for more detailed information.






	Returns:

	adata_mixture_orig – Results appended to anndata object if return_results or if original input was dataframe.



	Return type:

	anndata.AnnData










	
ucdeconvolve.tl.select(data: Union[AnnData, DataFrame], reference: Union[AnnData, DataFrame, List[str], str], token: Optional[str] = None, reference_key: str = 'celltype', ignore_categories: Optional[Iterable[str]] = None, method: str = 'both', return_results: bool = False, key_added: str = 'ucdselect', use_raw: Union[bool, Tuple[bool, bool]] = True, verbosity: Optional[int] = None) → Optional[AnnData]

	UniCell Deconvolve: Select

Predicts cell type fractions for provided transcriptomic data
using a user-specified reference. Leverages transfer learning
from base UCD model embeddings.


	Parameters:

	
	data – Transcriptomic data (obs x genes) to predict cell type fractions. Can
be either a dataframe or annotated dataset. Note that in any case
data will be converted to an annotated datset object before proceeding.


	reference – Transcriptomic data (obs x genes) to be used as a reference. Can be
either a dataframe or annotated dataset. Note that if a dataframe is
passed, row indices should correspond to categories for reference. If a list
of strings is passed, these strings should correspond to reference profiles
from the unicell cell type registry as any other names will throw an error.
If a string alone is passed, we look for a pre-built reference in the ucd backend.


	Currently valid prebuilt references include:
	allen-mouse-cortex : Mouse whole-brain cortex (44 cell types)
enge2017-human-pancreas : Human pancreas (6 cell types)
lee-human-pbmc-covid : Human PBMC (24 cell types)








	token – UCDeconvolve API access token. If None, defaults to settings parameter.


	reference_key – The key in reference.obs or index if reference is a dataframe to use to perform
the grouping operation.


	method – The method used for building a reference matrix. Must be one of two strings,
either “embeddings” or “features”. If “embeddings”, the UCD base model is queried
to return an embedding vector to represent celltype mixtures, and is
used to generated representations for transfer learning. If “features”, model
defaults to using features in the reference matrix, similar to other available
methods. Reccomended to use “both” in all cases.


	return_results – Whether or not to return the predictions dict from the function,
default to false as all data is written to anndata object either
passed in, or created when passing in a dataframe, which will
in that case be returned by default. Also returns the underlying
anndata if it is a view as copying can destroy context internally.


	ignore_categories – Categories in ‘reference.obs[‘reference_key’]’ to ignore. Default is None.


	use_raw – Use counts in ‘adata.raw’. Default True, as by convention in
single cell analysis, log1p scaled counts before HVG filter are kept here. Note
that if a tuple is passed, it will selectively apply use_raw to DATA and then REF
in that order.


	verbosity – Logging verbosity, if None defaults to settings value.






	Returns:

	adata_mixture_orig – Results appended to anndata object if return_results or if original input was dataframe.



	Return type:

	anndata.AnnData












            

          

      

      

    

  

    
      
          
            
  
Plotting

UniCell Deconvolve - Cell Type Deconvolution For Transcriptomic Data.


	
ucdeconvolve.pl.base_clustermap(adata: AnnData, groupby: str = 'leiden', category: Optional[str] = None, key: str = 'ucdbase', n_top_celltypes: int = 30, max_filter: float = 0.1, **kwargs) → Optional

	Plot Clustered heatmap of top celltype predictions
grouped by a column in ‘adata.obs’


	Parameters:

	
	adata – The annotated dataset with deconvolution data


	groupby – What column in ‘adata.obs’ to group celltype
predictions by (i.e. ‘leiden’).


	category – Which category of prediction data to use if
split, or all of not split.


	key – Key for deconvolution results, default is ‘ucdbase’


	n_top_celltypes – Number of top celltypes per category to take
and plot. Smaller means only the most common types.


	kwargs – Keyword attributes for clustermap. See
seaborn.clustermap for details.






	Return type:

	A clustermap










	
ucdeconvolve.pl.embedding(adata: AnnData, basis: str = 'X_umap', color: Optional[Union[str, List[str]]] = None, key: str = 'ucdbase', category: Optional[str] = None, **kwargs) → Optional[object]

	Plot Deconvolution

Wrapper for scanpy function ‘sc.pl.embedding’
to help plot deconvolution results. Follows
the parameter conventions of its wrapped function
with some exceptions noted below.

Functions to read the results from the deconvolution
run given by key, subset to category and then appends
them to the ‘adata.obs’ dataframe of a copy of the
passed adata object, allowing standard plotting
module to the visualize the results.


	Parameters:

	
	adata – anndata object to plot


	basis – The embedding to plot using, for example
‘X_pca’ or ‘X_umap’ if calculated and present.


	color – Refers to the cell type we want to plot contained
within the category of split and result specificed by
key. Can be one or more.


	key – location of data in obsm and uns to plot containing
numerical data and headers, respectively. Can be
either ‘ucdbase’ or ‘ucdselect’.


	category – if the data results are split, indicate which split
to use for plotting. defaults to ‘all’ assuming that
we did not split the output. valid categories
are ‘all’, ‘primary’, ‘cell_lines’, and ‘cancer’.


	kwargs – attributes to pass along to ‘sc.pl.embedding’, see
documentation for details.






	Return type:

	Plot(s)










	
ucdeconvolve.pl.explain_boxplot(adata: AnnData, key: str = 'ucdexplain', celltypes: Optional[Union[str, List[str]]] = None, n_top_genes: int = 16, ncols: int = 5, figsize: Tuple[int, int] = (3, 3), dpi: int = 150, titlewidth: int = 24, barcolor: str = 'lightblue', ax: Optional[Axes] = None, return_fig: bool = False) → Optional[Axes]

	Plot Boxplots of Feature Attributions By Gene


	Parameters:

	
	adata – Annotated dataset with ucdexplain results.


	key – UCDExplain results key, default is ‘ucdexplain’


	celltypes – The celltypes from the given run to plot. if none
then plots all.


	n_top_genes – Number of top attribution genes to plot.


	ncols – Number of columns to plot for multiple celltypes before
creating a new row


	figsize – Size of individual subplot figure


	dpi – Pixel density of plot


	titlewidth – Width of subplot title before newline


	barcolor – Color of bars


	ax – Optional axes to plot on.


	return_fig – Return figure or not






	Returns:

	fig – Figure with underlying subplots



	Return type:

	plt.Figure










	
ucdeconvolve.pl.explain_clustermap(adata: AnnData, key: Union[str, List[str]] = 'ucdexplain', n_top_genes: int = 64, **kwargs) → Optional[Axes]

	Plot Explanation Results as Clustermap

Plot Clustered heatmap of top feature attribution predictions
grouped by the celltypes passed to the ucd.tl.explain function.


	Parameters:

	
	adata – The annotated dataset with deconvolution data


	key – Key for deconvolution results, default is ‘ucdexplain’.


	n_top_genes – Number of top feature attributes (genes) per celltype


	kwargs – Keyword attributes for clustermap. See
seaborn.clustermap for details.






	Return type:

	A clustermap










	
ucdeconvolve.pl.spatial(adata: AnnData, color: Optional[Union[str, List[str]]] = None, key: str = 'ucdbase', category: Optional[str] = None, labels: Optional[List[str]] = None, colormaps: Optional[List[ListedColormap]] = None, cbar_nrows: int = 4, title: str = '', **kwargs) → Optional[object]

	Plot Spatial

Wrapper for scanpy function ‘sc.pl.spatial’
to help plot deconvolution results on spatial data.
Follows parameter conventions of wrapped function
with some exceptions.

Functions to read the results from the deconvolution
run given by key, subset to category and then appends
them to the ‘adata.obs’ dataframe of a copy of the
passed adata object, allowing standard plotting
module to the visualize the results.


	Parameters:

	
	adata – anndata object to plot


	color – Refers to the cell type(s) we want to plot contained
within the category of split and result specificed by
key. Can be one or more. If more than one string is
passed we try to plot an overlapped plot.


	key – location of data in obsm and uns to plot containing
numerical data and headers, respectively. Can be
either ‘ucdbase’ or ‘ucdselect’.


	category – if the data results are split, indicate which split
to use for plotting. defaults to ‘all’ assuming that
we did not split the output. valid categories
are ‘all’, ‘primary’, ‘cell_lines’, and ‘cancer’.


	labels – Labels for each color being plotted when using the
overlapping colormap spatial function.


	colormaps – Optional custom colormaps to use for each color.


	cbar_nrows – Number of rows to spread cbars across, default is 3.


	kwargs – attributes to pass along to ‘sc.pl.spatial’, see
documentation for details.






	Return type:

	Plot(s)












            

          

      

      

    

  

    
      
          
            
  
Utilities

UniCell Deconvolve - Cell Type Deconvolution For Transcriptomic Data.


	
ucdeconvolve.utils.assign_top_celltypes(adata: AnnData, key: str = 'ucdbase', category: Optional[str] = None, groupby: Optional[str] = None, inplace: bool = True, key_added: str = 'pred_celltype', knnsmooth_neighbors: Optional[int] = None, knnsmooth_cycles: int = 1) → Union[List[str], Dict[str, str]]

	Gets top deconvolution predictions by cluster.


	Parameters:

	
	adata – Annotated dataset with deconvolution results stored


	groupby – Optional variable, if not passed then the top celltype
is predicted for each individual sample by row.


	category – Which split category to use, defaults if none.


	key – Key for deconvolution results, default key is ‘ucdbase’


	inplace – Whether or not to attach the result to the anndata object ‘obs’
as a column


	key_added – The key to add as a column.


	knnsmooth_neighbors – Optional smoothing for predictions, uses neighbors graph calculated
using sc.tl.neighbors. If not none, passed integer referring to number
of nearest neighbors to consider for smoothing, reccomended 3.


	knnsmooth_cycles – Number of cycles to repeat smoothing, default 1.






	Returns:

	celltypes – If no groupby is passed return a list of strings corresponding
to the top celltype that can be used for annotation. If a group
is passed, returns a dicitonary mapping group label to celltype.



	Return type:

	Union[List[str], Dict[str, str]]










	
ucdeconvolve.utils.get_base_celltypes(root: Optional[str] = None, category: Optional[str] = None, as_digraph: bool = False) → List[str]

	Get UCDBase CellTypes

Return a list of UCDbase celltypes.


	Parameters:

	
	root – Optional root cell type, if set, returns all decendants
of that celltype along the UCD celltype hierarchy.


	category – If category is set, overrides root behavior and returns
a list of all celltypes in the subset category. Must be
either ‘primary’, ‘lines’, or ‘cancer’.


	as_digraph – If true, return the underlying networkX graph that can
be used to visualize result directly when calling a
root node. Call root node “cell” to return all nodes
in graph.






	Returns:

	celltypes – A list of celltypes, either all or subsets.



	Return type:

	List[str]










	
ucdeconvolve.utils.get_prebuilt_reference(reference: str, token: Optional[str] = None, cache: bool = True) → AnnData

	Get Prebuilt Reference

Downloads a pre-made reference dataset.


	Parameters:

	
	reference – String name of prebuilt reference to get.


	token – Optional access token, if not passed default token is retrieved from settings.


	cache – If true, save a loaded file into cachedir and try to reload it before downloading again.






	Returns:

	adata – Annotated dataset object containing the prebuilt reference.



	Return type:

	anndata.AnnData










	
ucdeconvolve.utils.list_prebuilt_references(token: Optional[str] = None) → AnnData

	List Prebuilt References

Lists available pre-built references


	Parameters:

	token – Optional access token, if not passed default token is retrieved from settings.



	Returns:

	adata – Annotated dataset object containing the prebuilt reference.



	Return type:

	anndata.AnnData










	
ucdeconvolve.utils.read_results(adata: AnnData, key: Optional[str] = None, category: Optional[str] = None, celltypes: Optional[Union[str, List[str]]] = None, explain_n_top_genes: Optional[int] = None) → DataFrame

	Read deconvolution results from an annotated dataset
and return a dataframe.


	Parameters:

	
	adata – Annotated dataset with deconvolution results stored.


	key – Key for deconvolution results. If not passed, will
default to searching for ‘ucdbase’, then ‘ucdselect’,
and lastly ‘ucdexplain’.


	category – Which split category to use. Defaults to ‘all’ if running
non-base model. If run base and split was made, uses ‘primary’.


	celltypes – The celltypes specifically to read results from, if None
then all celltypes from explanation are read and
combined in a multi-index dataframe. For ucdselect and ucdbase
celltypes will subset the returned dataframe.


	explain_n_top_genes – Number of genes to extract when reading explanations,
if None then return all genes.















            

          

      

      

    

  

    
      
          
            
  
Basic Tutorials

Browse some basic tutorials for how to get started with using UCD for your projects using the navbar.







            

          

      

      

    

  

    
      
          
            
  
Single Cell RNA-Seq

In this tutorial we are going to run through how UCDeconvolve can be used to aid in the analysis and annotation of single-cell RNA-Sequencing data. For this tutorial, we are going to use the ‘pbmc3k’ dataset provided in the scanpy datasets model at sc.datasets.pbmc3k().


Loading Packages & Authenticating

The first step in this analysis will be to load scanpy and ucdeconvolve after following the installation and registration instructions, and authenticate our API. In this tutorial we saved our user access token in the variable TOKEN.


[80]:





import scanpy as sc
import ucdeconvolve as ucd

ucd.api.authenticate(TOKEN)













2023-04-25 15:57:57,357|[UCD]|INFO: Updated valid user access token.






| .. note:: By default the logging level is set to DEBUG. To change logging levels you can import logging and set ucd.settings.verbosity directly. To reduce logs, change verbosity to logging.INFO. In general we recommend keeping logging to DEBUG to provide status updates on a running deconvolution job.



Loading & Preprocessing Data

We will now begin by loading our pbmc dataset.


[3]:





adata = sc.datasets.pbmc3k()







We will save raw counts data into adata, which can serve as an input to ucd functions. Unicell will detect non-logarithmized counts data and automatically normalize our data. We will run a quick built-in preprocssing functions using scanpy to obtain some clustered data. This step will take a minute or two to complete.


[ ]:





adata.raw = adata

sc.pp.recipe_seurat(adata)

sc.tl.pca(adata)
sc.pp.neighbors(adata, n_neighbors = 30)
sc.tl.umap(adata, min_dist = 0.1)
sc.tl.leiden(adata, resolution = 0.75)







We plot the UMAP of our dataset using leiden clusters as an overlay and see the following image:


[29]:





sc.pl.umap(adata, color = 'leiden')












[image: ../_images/notebooks_single_cell_example_9_0.png]






Initial Cluster Identification Using UCDBase

To get a general sense of the celltypes most likely present in this dataset, we want to first run ucd.tl.base which will return context-free deconvolutions of cell type states.


[7]:





ucd.tl.base(adata)













2023-04-25 13:10:28,425|[UCD]|INFO: Starting UCDeconvolveBASE Run. | Timer Started.
Preprocessing Dataset | 100% (11 of 11) || Elapsed Time: 0:00:01 Time:  0:00:01
2023-04-25 13:10:30,501|[UCD]|INFO: Uploading Data | Timer Started.
2023-04-25 13:10:31,339|[UCD]|INFO: Upload Complete | Elapsed Time: 0.838 (s)
Waiting For Submission : UNKNOWN | Queue Size : 0 | / |#| 0 Elapsed Time: 0:00:00
Waiting For Submission : QUEUED | Queue Size : 1 | | |#| 3 Elapsed Time: 0:00:04
Waiting For Submission : RUNNING | Queue Size : 1 | / |#| 3 Elapsed Time: 0:00:04
Waiting For Completion | 100% (2700 of 2700) || Elapsed Time: 0:00:28 Time:  0:00:28
2023-04-25 13:11:07,163|[UCD]|INFO: Download Results | Timer Started.
2023-04-25 13:11:08,505|[UCD]|INFO: Download Complete | Elapsed Time: 1.342 (s)
2023-04-25 13:11:09,238|[UCD]|INFO: Run Complete | Elapsed Time: 40.812 (s)







Plotting Clustermap

To get a general sense of the deconvolution results, let’s plot a clustermap that aggregates base predictions on the basis of leiden cluster using the function ucd.pl.base_clustermap


[58]:





ucd.pl.base_clustermap(adata, groupby = 'leiden', n_top_celltypes=75)








[58]:







<seaborn.matrix.ClusterGrid at 0x16b06d430>
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We can see that the predictions shown in the clustermap are hierarchecal. By default, ucdeconvolve base performs belief propagation, which takes flattened predictions and aggregates them up a cell type heirarchy. This flag can be set in the ucd.tl.base function as propagate = False. For most cases we reccomend peforming belief propagation, as it accounts for uncertainty in ground-truth labels used during training.

In either case, we can use this clustering information to label our dataset by selecting the most likely detailed cell subtype, using ucdbase to guide us to an answer faster than performing manual curation.


[59]:





label = "celltype_ucdbase_propagated"
adata.obs[label] = 'unknown'
adata.obs.loc[adata.obs.leiden.isin(("1",)), label] = "monocyte"
adata.obs.loc[adata.obs.leiden.isin(("4",)), label] = "platelet"
adata.obs.loc[adata.obs.leiden.isin(("3",)), label] = "b cell"
adata.obs.loc[adata.obs.leiden.isin(("0",)), label] = "cd4 t cell"
adata.obs.loc[adata.obs.leiden.isin(("2",)), label] = "natural killer cell"
adata.obs.loc[adata.obs.leiden.isin(("5",)), label] = "cd8 t cell"

sc.pl.umap(adata, color = 'celltype_ucdbase_propagated', legend_loc = 'on data',
           legend_fontsize = "xx-small", frameon = False)
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Examining Feature Attributions with UCDExplain

To gain some additional insight into the cell types being predicted for each cluster, we can leveraged integrated gradients which is implemented in the ucd.tl.explain module. This method takes a target output for the ucdbase model and computes attribution scores for all input genes. A positive attribution score indicates that a given gene’s expression is positively associated with the prediction of that given cell type (i.e. canonical marker genes tend to have high feature attribution
scores for their corresponding cell types) while a negative attribution score indicates that a given gene’s expression is negatively associated with the prediction of that given cell type (i.e. it may be a canonical marker of another cell type). We can use feature attributions to validate some of our predictions by confirming that the top genes associated with a given cell type are concordant with biological phenomena.


Examining Raw Predictions

To do this, we first must examine the models raw, non-propagated predictiosn. As feature attributions using integrated gradients relies on the core wieghts underpinning the ucdbase deep learning model, it does not consider belief propagation which is a post-processing function. Therefore, we ned to first get a sense of the “raw” cell type predictions made for each cluster.

We can plot raw cell type predictions using the same clustermap function above, but this time adding an additional parameter.


[60]:





ucd.pl.base_clustermap(adata, groupby = 'leiden', category = 'raw', n_top_celltypes = 75)








[60]:







<seaborn.matrix.ClusterGrid at 0x16b0c27f0>
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We can immediately see that these predictions are alot more specific for each cluster. We include a utility function to assign target cell types from predictions to each cluster, and can use this ‘raw’ prediction information to collect feature attributions for each cluster individually. This functions creates a new column in adata.obs entitled pred_celltype_{key} which in our case key, which represents the name of the run call, defaults to ucdbase, therefore our column is called
pred_celltype_ucdbase.


[61]:





ucd.utils.assign_top_celltypes(adata, category = "raw", groupby = "leiden")







Let’s plot the resulting ‘raw’ assigned celltypes over our UMAP and compre them with our aggregated propagation assignments we performed semi-manually.


[62]:





sc.pl.umap(adata, color = ["pred_celltype_ucdbase", "celltype_ucdbase_propagated"],
           legend_loc = 'on data', legend_fontsize = 'xx-small', frameon = False)
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Running UCDExplain


Warning

As feature attributions is a highly computationally intensive operation, for scRNA-Seq data where each cell is considered a sample, we highly recommend utilizing the subsampling capabilities built into ucd.tl.explain to speed up peformance. When run at the cluster-level, we find that subsampling a sufficient number of cells from each cluster provides the same level of feature attribution granularity as one would gain running all cells.



Let’s start by retrieving a dictionary mapping our groups in leiden to our raw celltypes. The assign_top_celltypes function has a parameter that can be set inplace = False which will return the dictionary directly.


[63]:





celltypes = ucd.utils.assign_top_celltypes(adata, category = "raw", groupby = "leiden", inplace = False)







Now let’s go ahead and run ucd.tl.explain` withour group set toleiden``. We will take as many as 64 cells per group to subsample with.


[37]:





ucd.tl.explain(adata, celltypes = celltypes, groupby = "leiden", group_n = 64)













2023-04-25 14:52:06,134|[UCD]|INFO: Starting UCDeconvolveEXPLAIN Run. | Timer Started.
Preprocessing Dataset | 100% (2 of 2) |##| Elapsed Time: 0:00:00 Time:  0:00:00
2023-04-25 14:52:06,884|[UCD]|INFO: Uploading Data | Timer Started.
2023-04-25 14:52:07,714|[UCD]|INFO: Upload Complete | Elapsed Time: 0.829 (s)
Waiting For Submission : UNKNOWN | Queue Size : 0 | / |#| 0 Elapsed Time: 0:00:00
Waiting For Submission : QUEUED | Queue Size : 1 | - |#| 1 Elapsed Time: 0:00:01
Waiting For Submission : RUNNING | Queue Size : 1 | \ |#| 1 Elapsed Time: 0:00:01
Waiting For Completion | 100% (283 of 283) || Elapsed Time: 0:00:57 Time:  0:00:57
2023-04-25 14:53:09,083|[UCD]|INFO: Download Results | Timer Started.
2023-04-25 14:53:09,311|[UCD]|INFO: Download Complete | Elapsed Time: 0.227 (s)
2023-04-25 14:53:09,932|[UCD]|INFO: Run Complete | Elapsed Time: 63.798 (s)






Let’s get a sense of the marker genes being used to classify each of the cell types. We can quickly obtain a decent visualization using the ucd.pl.explain_clustermap function.


[73]:





ucd.pl.explain_clustermap(adata, n_top_genes= 128)








[73]:







<seaborn.matrix.ClusterGrid at 0x16c5659a0>
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We can see from these results that UCDbase associates specific gene sets with a particular cell type annotations. They can also be used to verify the annotations being given by UCD by comparing them with known marker genes for varius cell types. For example we see CD79B as a strong attribution towards follicular b cell annotation, which is a well known b cell marker.

We can also plot boxplots for each celltype showing only the top N feature attributions for each type using the ucd.pl.explain_boxplot function.


[82]:





ucd.pl.explain_boxplot(adata, key = "ucdexplain", n_top_genes = 16, ncols = 3)
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Compare Attribution Signatures for Different B Cell Subtypes

Something to note was that for our b cell cluster, the ucd raw annotations showed a distribution of probabilities across three differen subtypes, ‘follicular b cells’, ‘naive b cell’, and ‘memory b cell’. Let’s generate explanations for all three cell types and compare results.


Note

At this moment, ucdeconvolve only supports passing one cell type per feature attribution call per sample, so we will simply repeat the function call and append different key batches as results. In the future it will be possible to request predictions for multiple celltypes at once per sample. In the meantime, the plotting function ucd.pl.explain_clustermap supports viewing multiple keys simultaneously by passing a list of keys corresponding to different ucdexplain runs, presumably



for different cell types.


[65]:





adata_bcells = adata[adata.obs.leiden.eq("3")]








[ ]:





ucd.tl.explain(adata_bcells, celltypes = 'naive b cell', key_added="ucdexplain_naive_b")
ucd.tl.explain(adata_bcells, celltypes = 'memory b cell', key_added="ucdexplain_memory_b")
ucd.tl.explain(adata_bcells, celltypes = 'follicular b cell', key_added="ucdexplain_follicular_b")







Now let’s go ahead and plot to view which genes are being used to drive different subtype predictions. These gene sets may be useful downstream in developing scoring signature or can be used for other applications such as gene set enrichment analysis or determining more fine-grained subclusters.


[76]:





import matplotlib.pyplot as plt
fig, axes = plt.subplots(ncols = 3, figsize = (9,3))

ucd.pl.explain_boxplot(adata_bcells, key = "ucdexplain_naive_b", ax = axes[0])
ucd.pl.explain_boxplot(adata_bcells, key = "ucdexplain_memory_b", ax = axes[1])
ucd.pl.explain_boxplot(adata_bcells, key = "ucdexplain_follicular_b", ax = axes[2])
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Generating Contextualized Predictions with UCDSelect

Once we obtain a general overview of our dataset and understand what cell type categories different clusters belong to, we may want to perform higher-resolution, contextualized annotation. We can use UCDSelect to do this, which leverages a transfer learning regime utilizing UCDBase as a feature extraciton engine to calculate cell-type features for an input target dataset and an annotated reference dataset.

UCDSelect comes with pre-built reference datasets for common tissue types. To view datasets available as prebuilt references, run the utility function ucd.utils.list_prebuilt_references().


Note

Would you like to have a particular study incorporated as a prebuilt reference? Email us at ucdeconvolve@gmail.com and let us know!




[83]:





ucd.utils.list_prebuilt_references()








[83]:







['allen-mouse-cortex', 'enge2017-human-pancreas', 'lee-human-pbmc-covid']







Running UCDSelect

Let’s go ahead and run ucdselect using the lee-human-pbmc-covid reference, as both our target and this reference are PBMCs.


[85]:





ucd.tl.select(adata, "lee-human-pbmc-covid")













2023-04-25 16:05:15,042|[UCD]|INFO: Starting UCDeconvolveSELECT Run. | Timer Started.
Preprocessing Mix | 100% (11 of 11) |####| Elapsed Time: 0:00:01 Time:  0:00:01
Preprocessing Ref | 100% (1 of 1) |######| Elapsed Time: 0:00:00 Time:  0:00:00
2023-04-25 16:05:18,864|[UCD]|INFO: Uploading Data | Timer Started.
2023-04-25 16:05:19,885|[UCD]|INFO: Upload Complete | Elapsed Time: 1.021 (s)
Waiting For Submission : UNKNOWN | Queue Size : 0 | \ |#| 2 Elapsed Time: 0:00:03
Waiting For Submission : QUEUED | Queue Size : 1 | | |#| 3 Elapsed Time: 0:00:04
Waiting For Submission : RUNNING | Queue Size : 1 | | |#| 3 Elapsed Time: 0:00:04
Waiting For Completion | 100% (2700 of 2700) || Elapsed Time: 0:00:54 Time:  0:00:54
2023-04-25 16:06:52,212|[UCD]|INFO: Download Results | Timer Started.
2023-04-25 16:06:52,779|[UCD]|INFO: Download Complete | Elapsed Time: 0.566 (s)
2023-04-25 16:06:53,483|[UCD]|INFO: Run Complete | Elapsed Time: 98.44 (s)






Now let’s go ahead and assign these predictions to our cells. We will use a similar approach as we did with ucdbase, but this time we pass “ucdselect” as our results key to indicate this is the run we want to assign from. Additionally, we are going to increase our clustering resolution as we are working with a contextualized, high-resolution reference dataset.


Note

Cell types are best regarded as phenotypic “states” and as such exhibit a spectrum of variation. Assigning on the basis of a cluster ID represents an approximation that serves to reduces noise in annotations. Care should be taken when selecting a degree of clustering to use for cell type assignment.




[129]:





sc.tl.leiden(adata, resolution=3.0, key_added="leiden_hires")
ucd.utils.assign_top_celltypes(adata, "ucdselect", groupby = "leiden_hires")








[131]:





sc.pl.umap(adata, color = "pred_celltype_ucdselect", legend_loc = 'on data',
           legend_fontsize = 'xx-small', frameon = False)
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Bulk RNA-Seq

In this tutorial we are going to run through how UCDeconvolve can be used to aid in the analysis and annotation of bulk RNA-Sequencing data. For this tutorial, we are going to recreate part of the analysis in Figure 5 of the unicell deconvolve manuscript, where we analyze bulk-RNA-Seq data from patients at various stages of Type 2 Diabetes from a prior study GSE50244.


Loading Packages & Authenticating

The first step in this analysis will be to load scanpy and ucdeconvolve after following the installation and registration instructions, and authenticate our API. In this tutorial we saved our user access token in the variable TOKEN.


[17]:





import matplotlib.pyplot as plt
import scanpy as sc
import seaborn as sns
import requests
import io

import ucdeconvolve as ucd
ucd.api.authenticate(TOKEN)













2023-04-25 17:23:16,217|[UCD]|INFO: Updated valid user access token.








Download and Pre-Process Data

We will download a preprocessed version of the target dataset from an online repository. This dataset contains expression data from pancreatic islet biopsies from ~100 patients at varying stages of T2D.


[3]:





url = "https://github.com/dchary/ucdeconvolve_paper/raw/main/figure5/adata_t2d_GSE50244.h5ad"
adata = sc.read_h5ad(io.BytesIO(requests.get(url).content))









Run UCDBase For Context-Free Prediction

We begin by obtaining context-free cell type predictions using UCDBase.


[5]:





ucd.tl.base(adata)













2023-04-25 17:19:09,360|[UCD]|INFO: Starting UCDeconvolveBASE Run. | Timer Started.
Preprocessing Dataset | 100% (1 of 1) |##| Elapsed Time: 0:00:00 Time:  0:00:00
2023-04-25 17:19:10,062|[UCD]|INFO: Uploading Data | Timer Started.
2023-04-25 17:19:10,917|[UCD]|INFO: Upload Complete | Elapsed Time: 0.854 (s)
Waiting For Submission : UNKNOWN | Queue Size : 0 | \ |#| 2 Elapsed Time: 0:00:03
Waiting For Submission : QUEUED | Queue Size : 1 | / |#| 4 Elapsed Time: 0:00:06
Waiting For Submission : RUNNING | Queue Size : 1 | | |#| 4 Elapsed Time: 0:00:06
Waiting For Completion | 100% (77 of 77) || Elapsed Time: 0:00:14 Time:  0:00:14
2023-04-25 17:19:33,178|[UCD]|INFO: Download Results | Timer Started.
2023-04-25 17:19:33,417|[UCD]|INFO: Download Complete | Elapsed Time: 0.239 (s)
2023-04-25 17:19:34,084|[UCD]|INFO: Run Complete | Elapsed Time: 24.723 (s)







Examine Differences in Pancreatic Beta Cell Fractions Across Disease States

We want to look at differences in cell type fractions between patients stratified by disease state. Late-stage T2D is characterized by a loss of beta cells. Let’s see if this dataset is concordant with this hypothesis.


[34]:





# Load only beta cell predictions
preds = ucd.utils.read_results(adata, celltypes = ['type b pancreatic cell'])

# Append to adata as a column
adata.obs['type b pancreatic cell'] = preds['type b pancreatic cell']

# Plot boxplots
fig, ax = plt.subplots(figsize = (3.5,5))
sns.boxplot(data = adata.obs, x = 'DiseaseStatus', y = 'type b pancreatic cell',
            order = ['Normal', 'Pre-Diabetes', 'Diabetes'], ax = ax,
            palette="Set2", width = 0.5)
sns.stripplot(data = adata.obs, x = 'DiseaseStatus', y = 'type b pancreatic cell',
            order = ['Normal', 'Pre-Diabetes', 'Diabetes'], ax = ax, color = 'k', size = 4)
sns.despine(ax = ax, trim = True, offset = 5)
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Run UCDSelect For Contextualized Predictions

We may want to leverage a pancreas-specific reference dataset to explore more detail subtypes, but also to confirm the findings suggested by our context-free approach. We can use UCDSelect to do this, which leverages a transfer learning regime utilizing UCDBase as a feature extraciton engine to calculate cell-type features for an input target dataset and an annotated reference dataset.

UCDSelect comes with pre-built reference datasets for common tissue types. To view datasets available as prebuilt references, run the utility function ucd.utils.list_prebuilt_references().


Note

Would you like to have a particular study incorporated as a prebuilt reference? Email us at ucdeconvolve@gmail.com and let us know!




[35]:





ucd.utils.list_prebuilt_references()








[35]:







['allen-mouse-cortex', 'enge2017-human-pancreas', 'lee-human-pbmc-covid']







Running UCDSelect

Let’s go ahead and run ucdselect using the enge2017-human-pancreas reference.


[36]:





ucd.tl.select(adata, "enge2017-human-pancreas")













2023-04-25 17:28:26,171|[UCD]|INFO: Starting UCDeconvolveSELECT Run. | Timer Started.
Preprocessing Mix | 100% (1 of 1) |######| Elapsed Time: 0:00:00 Time:  0:00:00
Preprocessing Ref | 100% (1 of 1) |######| Elapsed Time: 0:00:00 Time:  0:00:00
2023-04-25 17:28:27,651|[UCD]|INFO: Uploading Data | Timer Started.
2023-04-25 17:28:28,784|[UCD]|INFO: Upload Complete | Elapsed Time: 1.132 (s)
Waiting For Submission : UNKNOWN | Queue Size : 0 | / |#| 0 Elapsed Time: 0:00:00
Waiting For Submission : QUEUED | Queue Size : 1 | - |#| 1 Elapsed Time: 0:00:01
Waiting For Submission : RUNNING | Queue Size : 1 | | |#| 1 Elapsed Time: 0:00:01
Waiting For Completion | 100% (77 of 77) || Elapsed Time: 0:00:22 Time:  0:00:22
2023-04-25 17:29:12,832|[UCD]|INFO: Download Results | Timer Started.
2023-04-25 17:29:12,958|[UCD]|INFO: Download Complete | Elapsed Time: 0.125 (s)
2023-04-25 17:29:13,621|[UCD]|INFO: Run Complete | Elapsed Time: 47.449 (s)






Let’s go ahead and read our results, where we see only pancreas-specific cell types being deconvoled which were annotated in the original reference.


[38]:





ucd.utils.read_results(adata, key = 'ucdselect').head(5)








[38]:
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Release Notes




0.1.0 - 2023-04-17


Overview

This is a major update to the UCDeconvolve API. This update features an overhauled user registration system that enables independent user registration, verification, and API key management. Core API services have been expanded to include, in addition to UCDBase, UCDExplain, and UCDSelect fine-tuning services. The API is now designated as feature-complete, and has been upgraded to beta status.


Note

Please note that significant development work is still underway, and aspects of this software may be changed at any time without notice.



See details on major updates below:



Central API Server

All user management, job requests, progress, and results are managed by a central API server that serves as authentication and communication layer between end-users and backend prediction services.



User Registration / Authentication

Users are now free to register to receive an API key independently and will immediately receive API keys upon activation of their accounts. The entire registration process is now integrated into the core API and can be done programmatically. See tutorials for how registration works in additional detail.



Integration of UCDExplain and UCDSelect

Full functionality of UCDExplain and UDCSelect fine-tuning is now available. UCDExplain leverages integrated gradients to return feature attributions associated with prediction of a given cell type from the UCDBase model with a given input (i.e. gene). UCDSelect allows transfer learning of UCDBase embedding weights to enable contextualized deconvolution results when combined with an appropriate reference dataset. Prebuilt references have been made available for access, and dozens more are planned to be added in due time. For details on using UCDExplain and UCDSelect, see tutorials.



Improvements to UCDBase

Performance of the existing UCDBase context-free deconvolution function has been improved with two key changes.


	Data submitted for deconvolution is preprocessed client-side and uploaded to the central API server prior to initiation of prediction, which is in contrast to prior approach which involve streaming batch chunks directly and waiting for batch prediction responses. This approach offers improvements in performance and reliability. No user data is kept, and all submitted data is deleted immediately following completion of a prediction job.


	We have redeployed UCDBase using the ONNX ML platform. The base model used for prediction is a performance-optimized derivative of the original UCDBase model, which offers superior performance for large datasets. We show a comparison of correlations for original vs. optimized model performance and note high concordance:




[image: comparison]



Improvements to Utilities / Plotting

Numerous new plotting functions and utilities have been added to streamline the UCDeconvolve prediction process. These include new methods for generating visualizations of spatial deconvolution and feature-attribution plots as shown in the original manuscript. For more details, see updated tutorials section.



Under the Hood Improvements

Many more improvements were made to improve the usability, stability, and performance of the underlying UCD package, that lay a foundation for continued improvement over time.






0.0.1 - 2022-08-04


Overview

Initial release.
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Overview

This is a major update to the UCDeconvolve API. This update features an overhauled user registration system that enables independent user registration, verification, and API key management. Core API services have been expanded to include, in addition to UCDBase, UCDExplain, and UCDSelect fine-tuning services. The API is now designated as feature-complete, and has been upgraded to beta status.


Note

Please note that significant development work is still underway, and aspects of this software may be changed at any time without notice.



See details on major updates below:



Central API Server

All user management, job requests, progress, and results are managed by a central API server that serves as authentication and communication layer between end-users and backend prediction services.



User Registration / Authentication

Users are now free to register to receive an API key independently and will immediately receive API keys upon activation of their accounts. The entire registration process is now integrated into the core API and can be done programmatically. See tutorials for how registration works in additional detail.



Integration of UCDExplain and UCDSelect

Full functionality of UCDExplain and UDCSelect fine-tuning is now available. UCDExplain leverages integrated gradients to return feature attributions associated with prediction of a given cell type from the UCDBase model with a given input (i.e. gene). UCDSelect allows transfer learning of UCDBase embedding weights to enable contextualized deconvolution results when combined with an appropriate reference dataset. Prebuilt references have been made available for access, and dozens more are planned to be added in due time. For details on using UCDExplain and UCDSelect, see tutorials.



Improvements to UCDBase

Performance of the existing UCDBase context-free deconvolution function has been improved with two key changes.


	Data submitted for deconvolution is preprocessed client-side and uploaded to the central API server prior to initiation of prediction, which is in contrast to prior approach which involve streaming batch chunks directly and waiting for batch prediction responses. This approach offers improvements in performance and reliability. No user data is kept, and all submitted data is deleted immediately following completion of a prediction job.


	We have redeployed UCDBase using the ONNX ML platform. The base model used for prediction is a performance-optimized derivative of the original UCDBase model, which offers superior performance for large datasets. We show a comparison of correlations for original vs. optimized model performance and note high concordance:
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Improvements to Utilities / Plotting

Numerous new plotting functions and utilities have been added to streamline the UCDeconvolve prediction process. These include new methods for generating visualizations of spatial deconvolution and feature-attribution plots as shown in the original manuscript. For more details, see updated tutorials section.



Under the Hood Improvements

Many more improvements were made to improve the usability, stability, and performance of the underlying UCD package, that lay a foundation for continued improvement over time.
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