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UniCell Deconvolve (UCD) is a pre-trained deep learning model that provides context-free estimations of cell type
fractions from whole transcriptome expression data for bulk, single-cell and spatial transcriptomics data. The model
is trained on the world’s largest fully-integrated scRNA-Seq training database, comprising 28M+ single cells spanning
840+ cell types from 899 studies to date. Extensive benchmarking shows UCD favors comperably when compared
with reference-based deconvolution tools, without the need for pretraining. UCD demonstrates strong multi-task per-
formance across a range of deconvolution challenges spanning several transcriptomic data modalities, disease types,
and tissues.

• Read our paper at Nature Communications.

• Install via pip install ucdeconvolve.

• Discuss development on GitHub.

GETTING STARTED 1

https://github.com/dchary/ucdeconvolve
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https://github.com/dchary/ucdeconvolve
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https://www.nature.com/articles/s41467-023-36961-8
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2 GETTING STARTED



CHAPTER

ONE

INSTALLATION

1.1 From New Environment (Conda)

We highly recommend installing conda or miniconda and creating a new virtual environment to install ucdeconvolve
as it reduces the likelihood of version conflicts. We suggest the following conda environment which will be compatible
with jupyter notebooks.

conda create -n ucdenv python=3.8 pytables jupyter jupyterlab
conda activate ucdenv
pip install ucdeconvolve

Note: As ucdeconvolve uses HDF files as intermin datastore types, the pytables package must be installed with
conda before installing ucdeconvolve to ensure that all underlying hdf5 dependencies are present.

1.2 From Existing Environment (Pip)

To install ucdeconvolve using pypi in an existing environment, first ensure that pytables has been installed if you are
using an existing conda / virtualenv and that the tables package is present under pip list. Then, simply run the
following command to install ucdeconvolve and any other required dependencies.

pip install ucdeconvolve

3
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4 Chapter 1. Installation



CHAPTER

TWO

REGISTRATION

2.1 Create a New Account

Registration for UCDeconvolve is straightforward and can be done either in a notebook environment or terminal. We
offer dynamic registration with live user input, or programmatic registration with al fields as an input.

Load the ucdeconvolve package and run the ‘ucd.api.register’ command as shown below. Follow the instructions by
inputting the required information at each step.

[ ]: import ucdeconvolve as ucd

ucd.api.register()

Alternatively, one can perform registration entirely programmatically by invoking the function as follows:

[ ]: username = "USERNAME"
password = "PASSWORD"
firstname = "FIRSTNAME"
lastname = "LASTNAME"
email = "EMAIL"
institution = "INSTITUTION"

ucd.api.register(
username = username,
password = password,
firstname = firstname,
lastname = lastname,
email = email,
institution=institution
dynamic = False

)

5
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2.2 Account Activation

Upon completion of the initial registration form, you will recieve an email at the address specified with an activation
code. Copy the code and paste it back into the waiting input prompt in order to activate your account. Upon account
activation, a followup email will be sent with your user API key. This key will also be automatically appended to your
working ‘ucd’ module instance.

If you accidentally close the registration function instance prior to adding the activation code, you can still activate your
account by invoking the ucd.api.activate command and passing the activation code directly there.

[ ]: activation_code = "ACTIVATION_CODE"
ucd.api.activate(activation_code)

2.3 New Session Authentication

When you start a new python instance, you can authenticate your API by simply calling the ucd.tl.
authenticate([token]) function and passing your user access token. It will be appended to your settings module
at ucd.settings.token

6 Chapter 2. Registration



CHAPTER

THREE

API OVERVIEW

Import the ucdeconvolve package using import ucdeconvolve as ucd. The package contains four main modules,
described in detail below.

Note: Authenticate a new python session using ucd.api.authenticate

API: api

API functions allow for user registration, account activation and authentication for service invocation.

api.register([username, password, ...]) Registers a New User
api.activate([code]) Activate User Account
api.authenticate(token) Authenticate

Tools: tl

Tools module contains the three primary prediction functions of ucdeconvolve.

tl.base(data[, token, split, sort, ...]) UniCell Deconvolve: Base
tl.explain(data, celltypes[, groupby, ...]) UniCell Deconvolve: Explain
tl.select(data, reference[, token, ...]) UniCell Deconvolve: Select

Plotting: pl

Plotting functions for embedding and spatial are designed to interface as wrappers around scanpy functions such as
sc.pl.embedding and sc.pl.spatial with additional functionality to enable construciton of plots similar to those
in the ucdeconolve paper.

pl.embedding(adata[, basis, color, key, ...]) Plot Deconvolution
pl.spatial(adata[, color, key, category, ...]) Plot Spatial
pl.base_clustermap(adata[, groupby, ...]) Plot Clustered heatmap of top celltype predictions

grouped by a column in 'adata.obs'
pl.explain_boxplot(adata[, key, celltypes, ...]) Plot Boxplots of Feature Attributions By Gene
pl.explain_clustermap(adata[, key, n_top_genes]) Plot Explanation Results as Clustermap

Utilities: utils

Utilities module contains useful functions for interfacing with results of deconvolution functions and preparing predic-
tion queries.

7
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utils.read_results(adata[, key, category, ...]) Read deconvolution results from an annotated dataset
and return a dataframe.

utils.assign_top_celltypes(adata[, key, ...]) Gets top deconvolution predictions by cluster.
utils.get_base_celltypes([root, category, ...]) Get UCDBase CellTypes
utils.get_prebuilt_reference(reference[, ...]) Get Prebuilt Reference
utils.list_prebuilt_references([token]) List Prebuilt References

3.1 API

UniCell Deconvolve - Cell Type Deconvolution For Transcriptomic Data.

ucdeconvolve.api.activate(code: Optional[str] = None)→ None
Activate User Account

Activates account with an acitvation code recieved via email

Parameters
code – Activation code emailed to user upon registration

Return type
None

ucdeconvolve.api.authenticate(token: str)→ None
Authenticate

Updates user access token credentials

Parameters
token – Valid user token

Return type
None

ucdeconvolve.api.register(username: Optional[str] = None, password: Optional[str] = None, firstname:
Optional[str] = None, lastname: Optional[str] = None, email: Optional[str] =
None, institution: Optional[str] = None, dynamic: bool = True)→ None

Registers a New User

Parameters

• username – Username for new account

• password – Password for new account

• firstname – First name of new user

• lastname – Last name of new user

• email – Valid email address of new user. Note that an email will be sent for account activa-
tion.

• institution – The insitution, academic or private, the user is affiliated with.

• dynamic – Whether or not to prompt for inputs dynamically, default is True.

Return type
Either nothing or waits for user to complete.

8 Chapter 3. API Overview
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3.2 Tools

UniCell Deconvolve - Cell Type Deconvolution For Transcriptomic Data.

ucdeconvolve.tl.base(data: Union[AnnData, DataFrame], token: Optional[str] = None, split: bool = True,
sort: bool = True, propagate: bool = True, return_results: bool = False, key_added: str
= 'ucdbase', use_raw: Union[bool, Tuple[bool, bool]] = True, verbosity: Optional[int] =
None)→ Optional[AnnData]

UniCell Deconvolve: Base

Predicts cell type fractions for provided transcriptomic data.

Parameters

• data – Transcriptomic data (obs x genes) to predict cell type fractions. Can be either a
dataframe or annotated dataset. Note that in any case data will be converted to an annotated
datset object before proceeding.

• token – UCDeconvolve API access token. If None, defaults to settings parameter.

• split – Whether or not to split underlying data into three categories, primary, cancer
cell_line. Helps with interpretability downstream, default is True.

• sort – Sort columns of results by mean predictions. Default True.

• propagate – Whether or not to perform belief propagation and pass predictions up a cell-
type heiarchy. helpful in interpreting overall deconvolution results. default is True.

• return_results – Whether or not to return the predictions dict from the function, default
to false as all data is written to anndata object either passed in, or created when passing in a
dataframe, which will in that case be returned by default. Also returns the underlying anndata
if it is a view as copying can destroy context internally.

• use_raw – Use counts in ‘adata.raw’. Default True, as by convention in single cell analysis,
log1p scaled counts before HVG filter are kept here.

• verbosity – Level of verbosity for function information. Default is taken from package,
set to ‘logging.DEBUG’ for more detailed information.

Returns
adata_mixture_orig – Results appended to anndata object if return_results or if original input
was dataframe.

Return type
anndata.AnnData

ucdeconvolve.tl.explain(data: AnnData, celltypes: Union[str, List[str], Dict[Union[int, str], str]], groupby:
Optional[str] = None, group_n: int = 16, group_frac: Optional[float] = None, token:
Optional[str] = None, return_results: bool = False, key_added: str = 'ucdexplain',
use_raw: Union[bool, Tuple[bool, bool]] = True, verbosity: Optional[int] = None)
→ Optional[AnnData]

UniCell Deconvolve: Explain

Explains cell type fraction prediction for provided transcriptomic data.

Parameters

• data – Transcriptomic data (obs x genes) to predict cell type fractions. Can be either a
dataframe or annotated dataset. Note that in any case data will be converted to an annotated
datset object before proceeding.

3.2. Tools 9
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• celltypes – Name of cell type(s) to get explanations for. If a single string is passed, this
celltype is used for all samples. If a list of strings is passed, the list must be the same length as
the dataset and each entry corresponds to which celltype to get explanatons for in the whole
dataset. If a dictionary is passed, the key should corresponding to an ‘adata.obs’ column
defined by ‘groupby’, alliowing for celltype expalantions to be generated specific to different
clusters or conditions.

• groupby – Groupby key in ‘adata.obs’ to arrange search for celltypes. If celltypes is given
as a dict, this must be defined.

• group_n – The number of samples to subsample from each group for explanations, as this
is an expensive operation and most cells in a cluster will yield similar results.

• token – UCDeconvolve API access token. If None, defaults to settings parameter.

• return_results – Whether or not to return the predictions dict from the function, default
to false as all data is written to anndata object either passed in, or created when passing in a
dataframe, which will in that case be returned by default. Also returns the underlying anndata
if it is a view as copying can destroy context internally.

• use_raw – Use counts in ‘adata.raw’. Default True, as by convention in single cell analysis,
log1p scaled counts before HVG filter are kept here.

• verbosity – Level of verbosity for function information. Default is taken from package,
set to ‘logging.DEBUG’ for more detailed information.

Returns
adata_mixture_orig – Results appended to anndata object if return_results or if original input
was dataframe.

Return type
anndata.AnnData

ucdeconvolve.tl.select(data: Union[AnnData, DataFrame], reference: Union[AnnData, DataFrame, List[str],
str], token: Optional[str] = None, reference_key: str = 'celltype', ignore_categories:
Optional[Iterable[str]] = None, method: str = 'both', return_results: bool = False,
key_added: str = 'ucdselect', use_raw: Union[bool, Tuple[bool, bool]] = True,
verbosity: Optional[int] = None)→ Optional[AnnData]

UniCell Deconvolve: Select

Predicts cell type fractions for provided transcriptomic data using a user-specified reference. Leverages transfer
learning from base UCD model embeddings.

Parameters

• data – Transcriptomic data (obs x genes) to predict cell type fractions. Can be either a
dataframe or annotated dataset. Note that in any case data will be converted to an annotated
datset object before proceeding.

• reference – Transcriptomic data (obs x genes) to be used as a reference. Can be either
a dataframe or annotated dataset. Note that if a dataframe is passed, row indices should
correspond to categories for reference. If a list of strings is passed, these strings should
correspond to reference profiles from the unicell cell type registry as any other names will
throw an error. If a string alone is passed, we look for a pre-built reference in the ucd backend.

Currently valid prebuilt references include:
allen-mouse-cortex : Mouse whole-brain cortex (44 cell types) enge2017-human-pancreas
: Human pancreas (6 cell types) lee-human-pbmc-covid : Human PBMC (24 cell types)

• token – UCDeconvolve API access token. If None, defaults to settings parameter.

10 Chapter 3. API Overview
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• reference_key – The key in reference.obs or index if reference is a dataframe to use to
perform the grouping operation.

• method – The method used for building a reference matrix. Must be one of two strings, either
“embeddings” or “features”. If “embeddings”, the UCD base model is queried to return an
embedding vector to represent celltype mixtures, and is used to generated representations
for transfer learning. If “features”, model defaults to using features in the reference matrix,
similar to other available methods. Reccomended to use “both” in all cases.

• return_results – Whether or not to return the predictions dict from the function, default
to false as all data is written to anndata object either passed in, or created when passing in a
dataframe, which will in that case be returned by default. Also returns the underlying anndata
if it is a view as copying can destroy context internally.

• ignore_categories – Categories in ‘reference.obs[‘reference_key’]’ to ignore. Default is
None.

• use_raw – Use counts in ‘adata.raw’. Default True, as by convention in single cell analysis,
log1p scaled counts before HVG filter are kept here. Note that if a tuple is passed, it will
selectively apply use_raw to DATA and then REF in that order.

• verbosity – Logging verbosity, if None defaults to settings value.

Returns
adata_mixture_orig – Results appended to anndata object if return_results or if original input
was dataframe.

Return type
anndata.AnnData

3.3 Plotting

UniCell Deconvolve - Cell Type Deconvolution For Transcriptomic Data.

ucdeconvolve.pl.base_clustermap(adata: AnnData, groupby: str = 'leiden', category: Optional[str] = None,
key: str = 'ucdbase', n_top_celltypes: int = 30, max_filter: float = 0.1,
**kwargs)→ Optional

Plot Clustered heatmap of top celltype predictions grouped by a column in ‘adata.obs’

Parameters

• adata – The annotated dataset with deconvolution data

• groupby – What column in ‘adata.obs’ to group celltype predictions by (i.e. ‘leiden’).

• category – Which category of prediction data to use if split, or all of not split.

• key – Key for deconvolution results, default is ‘ucdbase’

• n_top_celltypes – Number of top celltypes per category to take and plot. Smaller means
only the most common types.

• kwargs – Keyword attributes for clustermap. See seaborn.clustermap for details.

Return type
A clustermap

ucdeconvolve.pl.embedding(adata: AnnData, basis: str = 'X_umap', color: Optional[Union[str, List[str]]] =
None, key: str = 'ucdbase', category: Optional[str] = None, **kwargs)→
Optional[object]

3.3. Plotting 11
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Plot Deconvolution

Wrapper for scanpy function ‘sc.pl.embedding’ to help plot deconvolution results. Follows the parameter con-
ventions of its wrapped function with some exceptions noted below.

Functions to read the results from the deconvolution run given by key, subset to category and then appends
them to the ‘adata.obs’ dataframe of a copy of the passed adata object, allowing standard plotting module to the
visualize the results.

Parameters

• adata – anndata object to plot

• basis – The embedding to plot using, for example ‘X_pca’ or ‘X_umap’ if calculated and
present.

• color – Refers to the cell type we want to plot contained within the category of split and
result specificed by key. Can be one or more.

• key – location of data in obsm and uns to plot containing numerical data and headers, re-
spectively. Can be either ‘ucdbase’ or ‘ucdselect’.

• category – if the data results are split, indicate which split to use for plotting. defaults to ‘all’
assuming that we did not split the output. valid categories are ‘all’, ‘primary’, ‘cell_lines’,
and ‘cancer’.

• kwargs – attributes to pass along to ‘sc.pl.embedding’, see documentation for details.

Return type
Plot(s)

ucdeconvolve.pl.explain_boxplot(adata: AnnData, key: str = 'ucdexplain', celltypes: Optional[Union[str,
List[str]]] = None, n_top_genes: int = 16, ncols: int = 5, figsize: Tuple[int,
int] = (3, 3), dpi: int = 150, titlewidth: int = 24, barcolor: str = 'lightblue',
ax: Optional[Axes] = None, return_fig: bool = False)→ Optional[Axes]

Plot Boxplots of Feature Attributions By Gene

Parameters

• adata – Annotated dataset with ucdexplain results.

• key – UCDExplain results key, default is ‘ucdexplain’

• celltypes – The celltypes from the given run to plot. if none then plots all.

• n_top_genes – Number of top attribution genes to plot.

• ncols – Number of columns to plot for multiple celltypes before creating a new row

• figsize – Size of individual subplot figure

• dpi – Pixel density of plot

• titlewidth – Width of subplot title before newline

• barcolor – Color of bars

• ax – Optional axes to plot on.

• return_fig – Return figure or not

Returns
fig – Figure with underlying subplots

12 Chapter 3. API Overview
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Return type
plt.Figure

ucdeconvolve.pl.explain_clustermap(adata: AnnData, key: Union[str, List[str]] = 'ucdexplain',
n_top_genes: int = 64, **kwargs)→ Optional[Axes]

Plot Explanation Results as Clustermap

Plot Clustered heatmap of top feature attribution predictions grouped by the celltypes passed to the ucd.tl.
explain function.

Parameters

• adata – The annotated dataset with deconvolution data

• key – Key for deconvolution results, default is ‘ucdexplain’.

• n_top_genes – Number of top feature attributes (genes) per celltype

• kwargs – Keyword attributes for clustermap. See seaborn.clustermap for details.

Return type
A clustermap

ucdeconvolve.pl.spatial(adata: AnnData, color: Optional[Union[str, List[str]]] = None, key: str = 'ucdbase',
category: Optional[str] = None, labels: Optional[List[str]] = None, colormaps:
Optional[List[ListedColormap]] = None, cbar_nrows: int = 4, title: str = '',
**kwargs)→ Optional[object]

Plot Spatial

Wrapper for scanpy function ‘sc.pl.spatial’ to help plot deconvolution results on spatial data. Follows parameter
conventions of wrapped function with some exceptions.

Functions to read the results from the deconvolution run given by key, subset to category and then appends
them to the ‘adata.obs’ dataframe of a copy of the passed adata object, allowing standard plotting module to the
visualize the results.

Parameters

• adata – anndata object to plot

• color – Refers to the cell type(s) we want to plot contained within the category of split and
result specificed by key. Can be one or more. If more than one string is passed we try to plot
an overlapped plot.

• key – location of data in obsm and uns to plot containing numerical data and headers, re-
spectively. Can be either ‘ucdbase’ or ‘ucdselect’.

• category – if the data results are split, indicate which split to use for plotting. defaults to ‘all’
assuming that we did not split the output. valid categories are ‘all’, ‘primary’, ‘cell_lines’,
and ‘cancer’.

• labels – Labels for each color being plotted when using the overlapping colormap spatial
function.

• colormaps – Optional custom colormaps to use for each color.

• cbar_nrows – Number of rows to spread cbars across, default is 3.

• kwargs – attributes to pass along to ‘sc.pl.spatial’, see documentation for details.

Return type
Plot(s)

3.3. Plotting 13
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3.4 Utilities

UniCell Deconvolve - Cell Type Deconvolution For Transcriptomic Data.

ucdeconvolve.utils.assign_top_celltypes(adata: AnnData, key: str = 'ucdbase', category: Optional[str] =
None, groupby: Optional[str] = None, inplace: bool = True,
key_added: str = 'pred_celltype', knnsmooth_neighbors:
Optional[int] = None, knnsmooth_cycles: int = 1)→
Union[List[str], Dict[str, str]]

Gets top deconvolution predictions by cluster.

Parameters

• adata – Annotated dataset with deconvolution results stored

• groupby – Optional variable, if not passed then the top celltype is predicted for each indi-
vidual sample by row.

• category – Which split category to use, defaults if none.

• key – Key for deconvolution results, default key is ‘ucdbase’

• inplace – Whether or not to attach the result to the anndata object ‘obs’ as a column

• key_added – The key to add as a column.

• knnsmooth_neighbors – Optional smoothing for predictions, uses neighbors graph cal-
culated using sc.tl.neighbors. If not none, passed integer referring to number of nearest
neighbors to consider for smoothing, reccomended 3.

• knnsmooth_cycles – Number of cycles to repeat smoothing, default 1.

Returns
celltypes – If no groupby is passed return a list of strings corresponding to the top celltype that
can be used for annotation. If a group is passed, returns a dicitonary mapping group label to
celltype.

Return type
Union[List[str], Dict[str, str]]

ucdeconvolve.utils.get_base_celltypes(root: Optional[str] = None, category: Optional[str] = None,
as_digraph: bool = False)→ List[str]

Get UCDBase CellTypes

Return a list of UCDbase celltypes.

Parameters

• root – Optional root cell type, if set, returns all decendants of that celltype along the UCD
celltype hierarchy.

• category – If category is set, overrides root behavior and returns a list of all celltypes in
the subset category. Must be either ‘primary’, ‘lines’, or ‘cancer’.

• as_digraph – If true, return the underlying networkX graph that can be used to visualize
result directly when calling a root node. Call root node “cell” to return all nodes in graph.

Returns
celltypes – A list of celltypes, either all or subsets.

Return type
List[str]
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ucdeconvolve.utils.get_prebuilt_reference(reference: str, token: Optional[str] = None, cache: bool =
True)→ AnnData

Get Prebuilt Reference

Downloads a pre-made reference dataset.

Parameters

• reference – String name of prebuilt reference to get.

• token – Optional access token, if not passed default token is retrieved from settings.

• cache – If true, save a loaded file into cachedir and try to reload it before downloading again.

Returns
adata – Annotated dataset object containing the prebuilt reference.

Return type
anndata.AnnData

ucdeconvolve.utils.list_prebuilt_references(token: Optional[str] = None)→ AnnData
List Prebuilt References

Lists available pre-built references

Parameters
token – Optional access token, if not passed default token is retrieved from settings.

Returns
adata – Annotated dataset object containing the prebuilt reference.

Return type
anndata.AnnData

ucdeconvolve.utils.read_results(adata: AnnData, key: Optional[str] = None, category: Optional[str] =
None, celltypes: Optional[Union[str, List[str]]] = None,
explain_n_top_genes: Optional[int] = None)→ DataFrame

Read deconvolution results from an annotated dataset and return a dataframe.

Parameters

• adata – Annotated dataset with deconvolution results stored.

• key – Key for deconvolution results. If not passed, will default to searching for ‘ucdbase’,
then ‘ucdselect’, and lastly ‘ucdexplain’.

• category – Which split category to use. Defaults to ‘all’ if running non-base model. If run
base and split was made, uses ‘primary’.

• celltypes – The celltypes specifically to read results from, if None then all celltypes from
explanation are read and combined in a multi-index dataframe. For ucdselect and ucdbase
celltypes will subset the returned dataframe.

• explain_n_top_genes – Number of genes to extract when reading explanations, if None
then return all genes.

Compatability: compat

The compatability module allows for users of earlier builds of ucdeconvolve who have existing workflows to continue
leveraging legacy code with minimal required changes.
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Warning: This module will be removed in the near future.

compat.deconvolve(data, token[, split, ...]) UniCell Deconvolve
compat.read_results(adata[, category, key]) Read deconvolution results from an annotated dataset

and return a dataframe.
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CHAPTER

FOUR

BASIC TUTORIALS

Browse some basic tutorials for how to get started with using UCD for your projects using the navbar.

4.1 Single Cell RNA-Seq

In this tutorial we are going to run through how UCDeconvolve can be used to aid in the analysis and annotation of
single-cell RNA-Sequencing data. For this tutorial, we are going to use the ‘pbmc3k’ dataset provided in the scanpy
datasets model at sc.datasets.pbmc3k().

4.1.1 Loading Packages & Authenticating

The first step in this analysis will be to load scanpy and ucdeconvolve after following the installation and registration
instructions, and authenticate our API. In this tutorial we saved our user access token in the variable TOKEN.

[80]: import scanpy as sc
import ucdeconvolve as ucd

ucd.api.authenticate(TOKEN)

2023-04-25 15:57:57,357|[UCD]|INFO: Updated valid user access token.

| .. note:: By default the logging level is set to DEBUG. To change logging levels you can import logging and set ucd.
settings.verbosity directly. To reduce logs, change verbosity to logging.INFO. In general we recommend
keeping logging to DEBUG to provide status updates on a running deconvolution job.

4.1.2 Loading & Preprocessing Data

We will now begin by loading our pbmc dataset.

[3]: adata = sc.datasets.pbmc3k()

We will save raw counts data into adata, which can serve as an input to ucd functions. Unicell will detect non-
logarithmized counts data and automatically normalize our data. We will run a quick built-in preprocssing functions
using scanpy to obtain some clustered data. This step will take a minute or two to complete.

[ ]: adata.raw = adata

sc.pp.recipe_seurat(adata)

(continues on next page)
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(continued from previous page)

sc.tl.pca(adata)
sc.pp.neighbors(adata, n_neighbors = 30)
sc.tl.umap(adata, min_dist = 0.1)
sc.tl.leiden(adata, resolution = 0.75)

We plot the UMAP of our dataset using leiden clusters as an overlay and see the following image:

[29]: sc.pl.umap(adata, color = 'leiden')

4.1.3 Initial Cluster Identification Using UCDBase

To get a general sense of the celltypes most likely present in this dataset, we want to first run ucd.tl.base which will
return context-free deconvolutions of cell type states.

[7]: ucd.tl.base(adata)

2023-04-25 13:10:28,425|[UCD]|INFO: Starting UCDeconvolveBASE Run. | Timer Started.
Preprocessing Dataset | 100% (11 of 11) || Elapsed Time: 0:00:01 Time: 0:00:01
2023-04-25 13:10:30,501|[UCD]|INFO: Uploading Data | Timer Started.
2023-04-25 13:10:31,339|[UCD]|INFO: Upload Complete | Elapsed Time: 0.838 (s)
Waiting For Submission : UNKNOWN | Queue Size : 0 | / |#| 0 Elapsed Time: 0:00:00
Waiting For Submission : QUEUED | Queue Size : 1 | | |#| 3 Elapsed Time: 0:00:04
Waiting For Submission : RUNNING | Queue Size : 1 | / |#| 3 Elapsed Time: 0:00:04
Waiting For Completion | 100% (2700 of 2700) || Elapsed Time: 0:00:28 Time: 0:00:28

(continues on next page)
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(continued from previous page)

2023-04-25 13:11:07,163|[UCD]|INFO: Download Results | Timer Started.
2023-04-25 13:11:08,505|[UCD]|INFO: Download Complete | Elapsed Time: 1.342 (s)
2023-04-25 13:11:09,238|[UCD]|INFO: Run Complete | Elapsed Time: 40.812 (s)

4.1.3.1 Plotting Clustermap

To get a general sense of the deconvolution results, let’s plot a clustermap that aggregates base predictions on the basis
of leiden cluster using the function ucd.pl.base_clustermap

[58]: ucd.pl.base_clustermap(adata, groupby = 'leiden', n_top_celltypes=75)

[58]: <seaborn.matrix.ClusterGrid at 0x16b06d430>
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We can see that the predictions shown in the clustermap are hierarchecal. By default, ucdeconvolve base performs
belief propagation, which takes flattened predictions and aggregates them up a cell type heirarchy. This flag can be set
in the ucd.tl.base function as propagate = False. For most cases we reccomend peforming belief propagation,
as it accounts for uncertainty in ground-truth labels used during training.

In either case, we can use this clustering information to label our dataset by selecting the most likely detailed cell
subtype, using ucdbase to guide us to an answer faster than performing manual curation.

[59]: label = "celltype_ucdbase_propagated"
adata.obs[label] = 'unknown'
adata.obs.loc[adata.obs.leiden.isin(("1",)), label] = "monocyte"
adata.obs.loc[adata.obs.leiden.isin(("4",)), label] = "platelet"
adata.obs.loc[adata.obs.leiden.isin(("3",)), label] = "b cell"
adata.obs.loc[adata.obs.leiden.isin(("0",)), label] = "cd4 t cell"
adata.obs.loc[adata.obs.leiden.isin(("2",)), label] = "natural killer cell"
adata.obs.loc[adata.obs.leiden.isin(("5",)), label] = "cd8 t cell"

sc.pl.umap(adata, color = 'celltype_ucdbase_propagated', legend_loc = 'on data',
legend_fontsize = "xx-small", frameon = False)
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4.1.4 Examining Feature Attributions with UCDExplain

To gain some additional insight into the cell types being predicted for each cluster, we can leveraged integrated gradi-
ents which is implemented in the ucd.tl.explain module. This method takes a target output for the ucdbase model
and computes attribution scores for all input genes. A positive attribution score indicates that a given gene’s expression
is positively associated with the prediction of that given cell type (i.e. canonical marker genes tend to have high feature
attribution scores for their corresponding cell types) while a negative attribution score indicates that a given gene’s
expression is negatively associated with the prediction of that given cell type (i.e. it may be a canonical marker of
another cell type). We can use feature attributions to validate some of our predictions by confirming that the top genes
associated with a given cell type are concordant with biological phenomena.

4.1.4.1 Examining Raw Predictions

To do this, we first must examine the models raw, non-propagated predictiosn. As feature attributions using integrated
gradients relies on the core wieghts underpinning the ucdbase deep learning model, it does not consider belief prop-
agation which is a post-processing function. Therefore, we ned to first get a sense of the “raw” cell type predictions
made for each cluster.

We can plot raw cell type predictions using the same clustermap function above, but this time adding an additional
parameter.

[60]: ucd.pl.base_clustermap(adata, groupby = 'leiden', category = 'raw', n_top_celltypes = 75)

[60]: <seaborn.matrix.ClusterGrid at 0x16b0c27f0>
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We can immediately see that these predictions are alot more specific for each cluster. We include a utility function
to assign target cell types from predictions to each cluster, and can use this ‘raw’ prediction information to col-
lect feature attributions for each cluster individually. This functions creates a new column in adata.obs entitled
pred_celltype_{key} which in our case key, which represents the name of the run call, defaults to ucdbase, there-
fore our column is called pred_celltype_ucdbase.

[61]: ucd.utils.assign_top_celltypes(adata, category = "raw", groupby = "leiden")

Let’s plot the resulting ‘raw’ assigned celltypes over our UMAP and compre them with our aggregated propagation
assignments we performed semi-manually.

[62]: sc.pl.umap(adata, color = ["pred_celltype_ucdbase", "celltype_ucdbase_propagated"],
legend_loc = 'on data', legend_fontsize = 'xx-small', frameon = False)
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4.1.4.2 Running UCDExplain

Warning: As feature attributions is a highly computationally intensive operation, for scRNA-Seq data where each
cell is considered a sample, we highly recommend utilizing the subsampling capabilities built into ucd.tl.
explain to speed up peformance. When run at the cluster-level, we find that subsampling a sufficient number of
cells from each cluster provides the same level of feature attribution granularity as one would gain running all cells.

Let’s start by retrieving a dictionary mapping our groups in leiden to our raw celltypes. The assign_top_celltypes
function has a parameter that can be set inplace = False which will return the dictionary directly.

[63]: celltypes = ucd.utils.assign_top_celltypes(adata, category = "raw", groupby = "leiden",␣
→˓inplace = False)

Now let’s go ahead and run ucd.tl.explain` withour group set toleiden``. We will take as many as 64 cells
per group to subsample with.

[37]: ucd.tl.explain(adata, celltypes = celltypes, groupby = "leiden", group_n = 64)

2023-04-25 14:52:06,134|[UCD]|INFO: Starting UCDeconvolveEXPLAIN Run. | Timer Started.
Preprocessing Dataset | 100% (2 of 2) |##| Elapsed Time: 0:00:00 Time: 0:00:00
2023-04-25 14:52:06,884|[UCD]|INFO: Uploading Data | Timer Started.
2023-04-25 14:52:07,714|[UCD]|INFO: Upload Complete | Elapsed Time: 0.829 (s)
Waiting For Submission : UNKNOWN | Queue Size : 0 | / |#| 0 Elapsed Time: 0:00:00
Waiting For Submission : QUEUED | Queue Size : 1 | - |#| 1 Elapsed Time: 0:00:01
Waiting For Submission : RUNNING | Queue Size : 1 | \ |#| 1 Elapsed Time: 0:00:01
Waiting For Completion | 100% (283 of 283) || Elapsed Time: 0:00:57 Time: 0:00:57
2023-04-25 14:53:09,083|[UCD]|INFO: Download Results | Timer Started.
2023-04-25 14:53:09,311|[UCD]|INFO: Download Complete | Elapsed Time: 0.227 (s)
2023-04-25 14:53:09,932|[UCD]|INFO: Run Complete | Elapsed Time: 63.798 (s)

Let’s get a sense of the marker genes being used to classify each of the cell types. We can quickly obtain a decent
visualization using the ucd.pl.explain_clustermap function.

[73]: ucd.pl.explain_clustermap(adata, n_top_genes= 128)

[73]: <seaborn.matrix.ClusterGrid at 0x16c5659a0>
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We can see from these results that UCDbase associates specific gene sets with a particular cell type annotations. They
can also be used to verify the annotations being given by UCD by comparing them with known marker genes for varius
cell types. For example we see CD79B as a strong attribution towards follicular b cell annotation, which is a well known
b cell marker.

We can also plot boxplots for each celltype showing only the top N feature attributions for each type using the ucd.
pl.explain_boxplot function.

[82]: ucd.pl.explain_boxplot(adata, key = "ucdexplain", n_top_genes = 16, ncols = 3)
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4.1.4.2.1 Compare Attribution Signatures for Different B Cell Subtypes

Something to note was that for our b cell cluster, the ucd raw annotations showed a distribution of probabilities across
three differen subtypes, ‘follicular b cells’, ‘naive b cell’, and ‘memory b cell’. Let’s generate explanations for all three
cell types and compare results.

Note: At this moment, ucdeconvolve only supports passing one cell type per feature attribution call per sample,
so we will simply repeat the function call and append different key batches as results. In the future it will be pos-
sible to request predictions for multiple celltypes at once per sample. In the meantime, the plotting function ucd.
pl.explain_clustermap supports viewing multiple keys simultaneously by passing a list of keys corresponding to
different ucdexplain runs, presumably

for different cell types.

[65]: adata_bcells = adata[adata.obs.leiden.eq("3")]

[ ]: ucd.tl.explain(adata_bcells, celltypes = 'naive b cell', key_added="ucdexplain_naive_b")
ucd.tl.explain(adata_bcells, celltypes = 'memory b cell', key_added="ucdexplain_memory_b
→˓")
ucd.tl.explain(adata_bcells, celltypes = 'follicular b cell', key_added="ucdexplain_
→˓follicular_b")

Now let’s go ahead and plot to view which genes are being used to drive different subtype predictions. These gene
sets may be useful downstream in developing scoring signature or can be used for other applications such as gene set
enrichment analysis or determining more fine-grained subclusters.

[76]: import matplotlib.pyplot as plt
fig, axes = plt.subplots(ncols = 3, figsize = (9,3))

ucd.pl.explain_boxplot(adata_bcells, key = "ucdexplain_naive_b", ax = axes[0])
ucd.pl.explain_boxplot(adata_bcells, key = "ucdexplain_memory_b", ax = axes[1])
ucd.pl.explain_boxplot(adata_bcells, key = "ucdexplain_follicular_b", ax = axes[2])
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4.1.5 Generating Contextualized Predictions with UCDSelect

Once we obtain a general overview of our dataset and understand what cell type categories different clusters belong
to, we may want to perform higher-resolution, contextualized annotation. We can use UCDSelect to do this, which
leverages a transfer learning regime utilizing UCDBase as a feature extraciton engine to calculate cell-type features for
an input target dataset and an annotated reference dataset.

UCDSelect comes with pre-built reference datasets for common tissue types. To view datasets available as prebuilt
references, run the utility function ucd.utils.list_prebuilt_references().

Note: Would you like to have a particular study incorporated as a prebuilt reference? Email us at
ucdeconvolve@gmail.com and let us know!

[83]: ucd.utils.list_prebuilt_references()

[83]: ['allen-mouse-cortex', 'enge2017-human-pancreas', 'lee-human-pbmc-covid']

4.1.5.1 Running UCDSelect

Let’s go ahead and run ucdselect using the lee-human-pbmc-covid reference, as both our target and this reference are
PBMCs.

[85]: ucd.tl.select(adata, "lee-human-pbmc-covid")

2023-04-25 16:05:15,042|[UCD]|INFO: Starting UCDeconvolveSELECT Run. | Timer Started.
Preprocessing Mix | 100% (11 of 11) |####| Elapsed Time: 0:00:01 Time: 0:00:01
Preprocessing Ref | 100% (1 of 1) |######| Elapsed Time: 0:00:00 Time: 0:00:00
2023-04-25 16:05:18,864|[UCD]|INFO: Uploading Data | Timer Started.
2023-04-25 16:05:19,885|[UCD]|INFO: Upload Complete | Elapsed Time: 1.021 (s)
Waiting For Submission : UNKNOWN | Queue Size : 0 | \ |#| 2 Elapsed Time: 0:00:03
Waiting For Submission : QUEUED | Queue Size : 1 | | |#| 3 Elapsed Time: 0:00:04
Waiting For Submission : RUNNING | Queue Size : 1 | | |#| 3 Elapsed Time: 0:00:04
Waiting For Completion | 100% (2700 of 2700) || Elapsed Time: 0:00:54 Time: 0:00:54
2023-04-25 16:06:52,212|[UCD]|INFO: Download Results | Timer Started.
2023-04-25 16:06:52,779|[UCD]|INFO: Download Complete | Elapsed Time: 0.566 (s)
2023-04-25 16:06:53,483|[UCD]|INFO: Run Complete | Elapsed Time: 98.44 (s)

Now let’s go ahead and assign these predictions to our cells. We will use a similar approach as we did with ucdbase,
but this time we pass “ucdselect” as our results key to indicate this is the run we want to assign from. Additionally,
we are going to increase our clustering resolution as we are working with a contextualized, high-resolution reference
dataset.

Note: Cell types are best regarded as phenotypic “states” and as such exhibit a spectrum of variation. Assigning on
the basis of a cluster ID represents an approximation that serves to reduces noise in annotations. Care should be taken
when selecting a degree of clustering to use for cell type assignment.

[129]: sc.tl.leiden(adata, resolution=3.0, key_added="leiden_hires")
ucd.utils.assign_top_celltypes(adata, "ucdselect", groupby = "leiden_hires")

[131]: sc.pl.umap(adata, color = "pred_celltype_ucdselect", legend_loc = 'on data',
legend_fontsize = 'xx-small', frameon = False)
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[ ]:

[ ]:

4.2 Spatial Transcriptomics

In this tutorial we are going to run through how UCDeconvolve can be used to aid in the analysis and annotation
of visium spatial transcriptomics data. For this tutorial, we will perform a cell type deconvolution of a spatial gene
expression section of the human lymph node, made available by 10X Genomics. We will utilize scanpy to quickly load
the dataset, and then pass it into ucdeconvolve to obtain cell type predictions.

4.2.1 Loading Packages & Authenticating

The first step in this analysis will be to load scanpy and ucdeconvolve after following the installation and registration
instructions, and authenticate our API. In this tutorial we saved our user access token in the variable TOKEN.

[25]: import scanpy as sc
import ucdeconvolve as ucd

ucd.api.authenticate(TOKEN)

2023-04-25 16:55:04,945|[UCD]|INFO: Updated valid user access token.
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4.2.2 Read Lymph Node Dataset

We begin by loading the V1_Human_Lymph_Node dataset from 10X Genomics made available in the sc.datasets.
visium_sge utility function.

[ ]: adata = sc.datasets.visium_sge("V1_Human_Lymph_Node")

Let’s perform some basic preprocessing on this dataset so we have some expression clusters to compare our downstream
results with.

[9]: adata.raw = adata

sc.pp.recipe_seurat(adata)

sc.pp.pca(adata)
sc.pp.neighbors(adata)
sc.tl.leiden(adata)
sc.tl.umap(adata)

[15]: sc.pl.spatial(adata, color = 'leiden')

28 Chapter 4. Basic Tutorials



UniCell Deconvolve, Release 0.1.0

4.2.3 Run UCDBase

We begin by obtaining context-free cell type predictions using UCDBase.

[5]: ucd.tl.base(adata)

2023-04-25 16:27:40,012|[UCD]|INFO: Starting UCDeconvolveBASE Run. | Timer Started.
Preprocessing Dataset | 100% (16 of 16) || Elapsed Time: 0:00:02 Time: 0:00:02
2023-04-25 16:27:43,509|[UCD]|INFO: Uploading Data | Timer Started.
2023-04-25 16:27:49,367|[UCD]|INFO: Upload Complete | Elapsed Time: 5.857 (s)
Waiting For Submission : UNKNOWN | Queue Size : 0 | \ |#| 2 Elapsed Time: 0:00:03
Waiting For Submission : QUEUED | Queue Size : 1 | | |#| 3 Elapsed Time: 0:00:04
Waiting For Submission : RUNNING | Queue Size : 1 | | |#| 3 Elapsed Time: 0:00:04
Waiting For Completion | 100% (4035 of 4035) || Elapsed Time: 0:00:45 Time: 0:00:45
2023-04-25 16:28:42,073|[UCD]|INFO: Download Results | Timer Started.
2023-04-25 16:28:42,817|[UCD]|INFO: Download Complete | Elapsed Time: 0.743 (s)
2023-04-25 16:28:43,466|[UCD]|INFO: Run Complete | Elapsed Time: 63.453 (s)

4.2.4 Visualizing Results

We can print our adata object to see what new information has been added to it. UCD appends the results of each
deconvolution run into ‘adata.obsm’ along with column names (i.e. celltypes) and run information into ‘adata.uns’
under the default results stem ‘ucdbase’. Depending on whether or not the split parameter was set to True or False, you
will either see a single new entry into ‘adata.obsm’ or three entries. By default, split = True so predictions will be split
into primary (non-malignat), cell lines, and primary cancer (malignant). raw unsplit predictions are also saved.

[7]: adata

[7]: AnnData object with n_obs × n_vars = 4035 × 36601
obs: 'in_tissue', 'array_row', 'array_col'
var: 'gene_ids', 'feature_types', 'genome'
uns: 'spatial', 'ucdbase'
obsm: 'spatial', 'ucdbase_cancer', 'ucdbase_lines', 'ucdbase_primary', 'ucdbase_raw'

Let’s start by reading our results in their raw, unpropagated form and see what top cell type predictions exist in this
sample. Note that since this is a visium sample, these deconvolution represent actual predicted cell type mixtures and
not individual cell phenotypes.

[35]: ucd.utils.read_results(adata, category = 'raw').head(5)

[35]: germinal center b cell igg memory b cell naive t cell
AAACAAGTATCTCCCA-1 0.107994 0.118136 0.079384 \
AAACAATCTACTAGCA-1 0.210373 0.019785 0.241911
AAACACCAATAACTGC-1 0.114059 0.096963 0.018223
AAACAGAGCGACTCCT-1 0.348411 0.028202 0.009421
AAACAGCTTTCAGAAG-1 0.100210 0.118197 0.040606

common dendritic progenitor follicular b cell
AAACAAGTATCTCCCA-1 0.094625 0.046563 \
AAACAATCTACTAGCA-1 0.081217 0.008128
AAACACCAATAACTGC-1 0.063723 0.031963
AAACAGAGCGACTCCT-1 0.019920 0.069834
AAACAGCTTTCAGAAG-1 0.136658 0.181446

(continues on next page)
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(continued from previous page)

immature b cell effector cd4-positive, alpha-beta t cell
AAACAAGTATCTCCCA-1 0.059231 0.031747 \
AAACAATCTACTAGCA-1 0.007391 0.027828
AAACACCAATAACTGC-1 0.034795 0.007577
AAACAGAGCGACTCCT-1 0.010529 0.000306
AAACAGCTTTCAGAAG-1 0.041983 0.018380

endothelial cell of lymphatic vessel t cell
AAACAAGTATCTCCCA-1 0.020969 0.022492 \
AAACAATCTACTAGCA-1 0.007141 0.004119
AAACACCAATAACTGC-1 0.110919 0.042955
AAACAGAGCGACTCCT-1 0.003792 0.289740
AAACAGCTTTCAGAAG-1 0.011223 0.005778

naive thymus-derived cd4-positive, alpha-beta t cell ...
AAACAAGTATCTCCCA-1 0.006955 ... \
AAACAATCTACTAGCA-1 0.214080 ...
AAACACCAATAACTGC-1 0.000502 ...
AAACAGAGCGACTCCT-1 0.000523 ...
AAACAGCTTTCAGAAG-1 0.005383 ...

oogonial cell contractile cell polar body
AAACAAGTATCTCCCA-1 0.0 0.0 0.0 \
AAACAATCTACTAGCA-1 0.0 0.0 0.0
AAACACCAATAACTGC-1 0.0 0.0 0.0
AAACAGAGCGACTCCT-1 0.0 0.0 0.0
AAACAGCTTTCAGAAG-1 0.0 0.0 0.0

natural killer cell cell b-1a b cell
AAACAAGTATCTCCCA-1 0.0 0.0 \
AAACAATCTACTAGCA-1 0.0 0.0
AAACACCAATAACTGC-1 0.0 0.0
AAACAGAGCGACTCCT-1 0.0 0.0
AAACAGCTTTCAGAAG-1 0.0 0.0

supporting cell of cochlea bone marrow cell
AAACAAGTATCTCCCA-1 0.0 0.0 \
AAACAATCTACTAGCA-1 0.0 0.0
AAACACCAATAACTGC-1 0.0 0.0
AAACAGAGCGACTCCT-1 0.0 0.0
AAACAGCTTTCAGAAG-1 0.0 0.0

pre-natural killer cell kidney granular cell
AAACAAGTATCTCCCA-1 0.0 0.0 \
AAACAATCTACTAGCA-1 0.0 0.0
AAACACCAATAACTGC-1 0.0 0.0
AAACAGAGCGACTCCT-1 0.0 0.0
AAACAGCTTTCAGAAG-1 0.0 0.0

splenic red pulp macrophagec
AAACAAGTATCTCCCA-1 0.0
AAACAATCTACTAGCA-1 0.0

(continues on next page)
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(continued from previous page)

AAACACCAATAACTGC-1 0.0
AAACAGAGCGACTCCT-1 0.0
AAACAGCTTTCAGAAG-1 0.0

[5 rows x 841 columns]

We can visualize our results by using one of the built-in plotting functions in UCD, which wrap scanpy’s plotting API.

[28]: ucd.pl.spatial(adata, color = "germinal center b cell")

4.2.4.1 Advanced Visualization

Many times it can be useful to plot multiple cell type densities on the same spatial plot. To do this, ucd.pl.spatial
extends the functionality of scanpy’s spatial plotting functions to allow us to plot multiple cell type predictions. We
offer a set of colormaps under ucd.pl.CM inspired by cell2location [Kleshchevnikov et. al. 2022] that can be used as
overlay colors.

[34]: ucd.pl.spatial(adata,
color = ["germinal center b cell", "naive t cell", "igg plasma cell"],
labels = ['GC B', "Naive T", "IgG Plasma"],
colormaps = [ucd.pl.CM.Yellow, ucd.pl.CM.Blue, ucd.pl.CM.Orange],
cbar_nrows=3

)
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[34]: <Axes: xlabel='spatial1', ylabel='spatial2'>

[ ]:

4.3 Bulk RNA-Seq

In this tutorial we are going to run through how UCDeconvolve can be used to aid in the analysis and annotation of
bulk RNA-Sequencing data. For this tutorial, we are going to recreate part of the analysis in Figure 5 of the unicell
deconvolve manuscript, where we analyze bulk-RNA-Seq data from patients at various stages of Type 2 Diabetes from
a prior study GSE50244.
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4.3.1 Loading Packages & Authenticating

The first step in this analysis will be to load scanpy and ucdeconvolve after following the installation and registration
instructions, and authenticate our API. In this tutorial we saved our user access token in the variable TOKEN.

[17]: import matplotlib.pyplot as plt
import scanpy as sc
import seaborn as sns
import requests
import io

import ucdeconvolve as ucd
ucd.api.authenticate(TOKEN)

2023-04-25 17:23:16,217|[UCD]|INFO: Updated valid user access token.

4.3.2 Download and Pre-Process Data

We will download a preprocessed version of the target dataset from an online repository. This dataset contains expres-
sion data from pancreatic islet biopsies from ~100 patients at varying stages of T2D.

[3]: url = "https://github.com/dchary/ucdeconvolve_paper/raw/main/figure5/adata_t2d_GSE50244.
→˓h5ad"
adata = sc.read_h5ad(io.BytesIO(requests.get(url).content))

4.3.3 Run UCDBase For Context-Free Prediction

We begin by obtaining context-free cell type predictions using UCDBase.

[5]: ucd.tl.base(adata)

2023-04-25 17:19:09,360|[UCD]|INFO: Starting UCDeconvolveBASE Run. | Timer Started.
Preprocessing Dataset | 100% (1 of 1) |##| Elapsed Time: 0:00:00 Time: 0:00:00
2023-04-25 17:19:10,062|[UCD]|INFO: Uploading Data | Timer Started.
2023-04-25 17:19:10,917|[UCD]|INFO: Upload Complete | Elapsed Time: 0.854 (s)
Waiting For Submission : UNKNOWN | Queue Size : 0 | \ |#| 2 Elapsed Time: 0:00:03
Waiting For Submission : QUEUED | Queue Size : 1 | / |#| 4 Elapsed Time: 0:00:06
Waiting For Submission : RUNNING | Queue Size : 1 | | |#| 4 Elapsed Time: 0:00:06
Waiting For Completion | 100% (77 of 77) || Elapsed Time: 0:00:14 Time: 0:00:14
2023-04-25 17:19:33,178|[UCD]|INFO: Download Results | Timer Started.
2023-04-25 17:19:33,417|[UCD]|INFO: Download Complete | Elapsed Time: 0.239 (s)
2023-04-25 17:19:34,084|[UCD]|INFO: Run Complete | Elapsed Time: 24.723 (s)
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4.3.3.1 Examine Differences in Pancreatic Beta Cell Fractions Across Disease States

We want to look at differences in cell type fractions between patients stratified by disease state. Late-stage T2D is
characterized by a loss of beta cells. Let’s see if this dataset is concordant with this hypothesis.

[34]: # Load only beta cell predictions
preds = ucd.utils.read_results(adata, celltypes = ['type b pancreatic cell'])

# Append to adata as a column
adata.obs['type b pancreatic cell'] = preds['type b pancreatic cell']

# Plot boxplots
fig, ax = plt.subplots(figsize = (3.5,5))
sns.boxplot(data = adata.obs, x = 'DiseaseStatus', y = 'type b pancreatic cell',

order = ['Normal', 'Pre-Diabetes', 'Diabetes'], ax = ax,
palette="Set2", width = 0.5)

sns.stripplot(data = adata.obs, x = 'DiseaseStatus', y = 'type b pancreatic cell',
order = ['Normal', 'Pre-Diabetes', 'Diabetes'], ax = ax, color = 'k', size =␣

→˓4)
sns.despine(ax = ax, trim = True, offset = 5)
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4.3.4 Run UCDSelect For Contextualized Predictions

We may want to leverage a pancreas-specific reference dataset to explore more detail subtypes, but also to confirm the
findings suggested by our context-free approach. We can use UCDSelect to do this, which leverages a transfer learning
regime utilizing UCDBase as a feature extraciton engine to calculate cell-type features for an input target dataset and
an annotated reference dataset.

UCDSelect comes with pre-built reference datasets for common tissue types. To view datasets available as prebuilt
references, run the utility function ucd.utils.list_prebuilt_references().

Note: Would you like to have a particular study incorporated as a prebuilt reference? Email us at
ucdeconvolve@gmail.com and let us know!

[35]: ucd.utils.list_prebuilt_references()

[35]: ['allen-mouse-cortex', 'enge2017-human-pancreas', 'lee-human-pbmc-covid']

4.3.4.1 Running UCDSelect

Let’s go ahead and run ucdselect using the enge2017-human-pancreas reference.

[36]: ucd.tl.select(adata, "enge2017-human-pancreas")

2023-04-25 17:28:26,171|[UCD]|INFO: Starting UCDeconvolveSELECT Run. | Timer Started.
Preprocessing Mix | 100% (1 of 1) |######| Elapsed Time: 0:00:00 Time: 0:00:00
Preprocessing Ref | 100% (1 of 1) |######| Elapsed Time: 0:00:00 Time: 0:00:00
2023-04-25 17:28:27,651|[UCD]|INFO: Uploading Data | Timer Started.
2023-04-25 17:28:28,784|[UCD]|INFO: Upload Complete | Elapsed Time: 1.132 (s)
Waiting For Submission : UNKNOWN | Queue Size : 0 | / |#| 0 Elapsed Time: 0:00:00
Waiting For Submission : QUEUED | Queue Size : 1 | - |#| 1 Elapsed Time: 0:00:01
Waiting For Submission : RUNNING | Queue Size : 1 | | |#| 1 Elapsed Time: 0:00:01
Waiting For Completion | 100% (77 of 77) || Elapsed Time: 0:00:22 Time: 0:00:22
2023-04-25 17:29:12,832|[UCD]|INFO: Download Results | Timer Started.
2023-04-25 17:29:12,958|[UCD]|INFO: Download Complete | Elapsed Time: 0.125 (s)
2023-04-25 17:29:13,621|[UCD]|INFO: Run Complete | Elapsed Time: 47.449 (s)

Let’s go ahead and read our results, where we see only pancreas-specific cell types being deconvoled which were
annotated in the original reference.

[38]: ucd.utils.read_results(adata, key = 'ucdselect').head(5)

[38]: beta alpha ductal delta acinar mesenchymal
sample_id
GSM1216753 0.000859 0.048488 0.704008 0.119697 0.126949 0.000000
GSM1216755 0.126114 0.124226 0.000000 0.000000 0.710946 0.038713
GSM1216758 0.365763 0.102278 0.000000 0.000000 0.000000 0.531958
GSM1216760 0.566138 0.015259 0.000000 0.000000 0.207783 0.210820
GSM1216763 0.000000 0.066785 0.125175 0.000000 0.396808 0.411232

Let’s repeat our boxplot plotting and look at results for type b pancreatic cells when using a contextualized reference
for deconvolution with fine-tuning.
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[58]: # Load only beta cell predictions
preds = ucd.utils.read_results(adata, key = 'ucdselect', celltypes = ['beta'])

# Append to adata as a column
adata.obs['beta'] = preds['beta']

# Plot boxplots
fig, ax = plt.subplots(figsize = (3.5,5))
sns.boxplot(data = adata.obs, x = 'DiseaseStatus', y = 'beta',

order = ['Normal', 'Pre-Diabetes', 'Diabetes'], ax = ax,
palette="Set2", width = 0.5)

sns.stripplot(data = adata.obs, x = 'DiseaseStatus', y = 'beta',
order = ['Normal', 'Pre-Diabetes', 'Diabetes'], ax = ax, color = 'k', size =␣

→˓4)
sns.despine(ax = ax, trim = True, offset = 5)

We can see that islet samples in the Diabetes cohort exhibit almost no detectable beta cells, which patients who are
otherwise healthy report a predicted beta cell median fraction of ~30%. Note that while the trend of relative proportions
between ucdbase and ucdselect is the same, the absolute proportions were different. Healthy islets are often ~70% beta
cells, however these bulk islet samples likely represent imperfect dissections, with ~50% of the tissue predicted to
represent pancreatical acinar / ductal epithelial cells and mesencyhmal stroma.
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FIVE

RELEASE NOTES

5.1 0.1.0 - 2023-04-17

5.1.1 Overview

This is a major update to the UCDeconvolve API. This update features an overhauled user registration system that
enables independent user registration, verification, and API key management. Core API services have been expanded
to include, in addition to UCDBase, UCDExplain, and UCDSelect fine-tuning services. The API is now designated as
feature-complete, and has been upgraded to beta status.

Note: Please note that significant development work is still underway, and aspects of this software may be changed at
any time without notice.

See details on major updates below:

5.1.2 Central API Server

All user management, job requests, progress, and results are managed by a central API server that serves as authenti-
cation and communication layer between end-users and backend prediction services.

5.1.3 User Registration / Authentication

Users are now free to register to receive an API key independently and will immediately receive API keys upon acti-
vation of their accounts. The entire registration process is now integrated into the core API and can be done program-
matically. See tutorials for how registration works in additional detail.

5.1.4 Integration of UCDExplain and UCDSelect

Full functionality of UCDExplain and UDCSelect fine-tuning is now available. UCDExplain leverages integrated gra-
dients to return feature attributions associated with prediction of a given cell type from the UCDBase model with a
given input (i.e. gene). UCDSelect allows transfer learning of UCDBase embedding weights to enable contextual-
ized deconvolution results when combined with an appropriate reference dataset. Prebuilt references have been made
available for access, and dozens more are planned to be added in due time. For details on using UCDExplain and
UCDSelect, see tutorials.
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5.1.5 Improvements to UCDBase

Performance of the existing UCDBase context-free deconvolution function has been improved with two key changes.

1. Data submitted for deconvolution is preprocessed client-side and uploaded to the central API server prior to
initiation of prediction, which is in contrast to prior approach which involve streaming batch chunks directly and
waiting for batch prediction responses. This approach offers improvements in performance and reliability. No
user data is kept, and all submitted data is deleted immediately following completion of a prediction job.

2. We have redeployed UCDBase using the ONNX ML platform. The base model used for prediction is a
performance-optimized derivative of the original UCDBase model, which offers superior performance for large
datasets. We show a comparison of correlations for original vs. optimized model performance and note high
concordance:
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5.1.6 Improvements to Utilities / Plotting

Numerous new plotting functions and utilities have been added to streamline the UCDeconvolve prediction process.
These include new methods for generating visualizations of spatial deconvolution and feature-attribution plots as shown
in the original manuscript. For more details, see updated tutorials section.

5.1.7 Under the Hood Improvements

Many more improvements were made to improve the usability, stability, and performance of the underlying UCD
package, that lay a foundation for continued improvement over time.

5.2 0.0.1 - 2022-08-04

5.2.1 Overview

Initial release.
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METHOD OVERVIEW

A little about UCD.
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